Как доказать что число простое или составное
Как определить простое число или нет
Простые числа – это числа, которые делятся только на себя и на 1; все остальные числа называются составными числами. Существует множество способов определения того, является ли число простым. Некоторые способы являются относительно простыми, но они не подходят для больших чисел. Другие способы, применимые для больших чисел, фактически представляют собой вероятностные алгоритмы, которые иногда ошибочно характеризуют число как простое или составное.
Метод 1 Перебор делителей
Перебор делителей – самый легкий способ определить простоту числа. В случае малых чисел это, пожалуй, также и самый быстрый способ. Он основан на определении простого числа: число является простым, если оно не имеет делителей кроме самого себя и единицы.
Метод 2 Тест Ферма
В 1640 году французский математик Пьер Ферма впервые сформулировал теорему (малая теорема Ферма), которая используется при определении простоты числа. Фактически, тест Ферма служит для определения составных чисел, а не простых. Этот тест с уверенностью определяет, является ли число составным, или определяет, что число «скорее всего» простое. Тест Ферма полезен в случаях, когда перебор делителей непрактичен и когда доступен список чисел, являющихся исключениями из теоремы.
Метод 3 Тест Миллера-Рабина
Тест Миллера-Рабина эффективно определяет, является ли число составным (и лучше обрабатывает исключения, такие как числа Кармайкла).
Условие задачи 2.30
Задача 2.30
Дан одномерный массив А, состоящий из натуральных чисел. Вывести на экран количество простых чисел в массиве.
Для начала напомню, что такое простые числа.
Простое число — это натуральное число, которое имеет ровно два различных натуральных делителя — единицу и самого себя.
То есть если число делится без остатка только на 1 и на самого себя, то такое число является простым.
Например, простыми числами являются 2, 3, 5 и т.п.
А вот 4 уже не является простым, так как делится без остатка не только на 1 и 4, но ещё и на 2.
Если вы подзабыли, что такое натуральное число, то см. здесь.
А теперь перейдём к задаче. По сути нам нужна программа, определяющая простые числа. А уж перебрать элементы массива в цикле и проверить их значения — это дело техники. Заодно мы можем не только подсчитать, но и вывести на экран простые числа массива.
Как определить простое число в Паскале
Алгоритм решения с подробным разбором приведу на Паскале. Решение на С++ можете посмотреть в примере программы на С++.
ВАЖНО!
На этом многие могут ошибиться. В определении сказано, что простое число имеет ровно два различных делителя. Следовательно, число 1 не является простым (также не является простым, так как ноль можно делить на любые числа).
Проверять, является ли число простым, будем с помощью функции, которую сами и создадим. Эта функция будет возвращать TRUE, если число простое.
В функции сначала будем проверять, не является ли число меньше двух. Если да, то это уже не простое число. Если же число равно 2 или 3, то оно является однозначно простым и делать какие-то дополнительные проверки не требуется.
А вот если число N будет больше трёх, то в этом случае в цикле будем перебирать все возможные делители, начиная от 2 до (N-1). Если на какой-то делитель число N делится без остатка, значит, это тоже не простое число. В этом случае мы прерываем цикл (потому что проверять дальше нет смысла), а функция возвращает FALSE.
Проверять, делится ли число на самоё себя нет смысла (поэтому цикл длится только до N-1).
Саму функцию здесь приводить не буду — посмотрите её в примерах программ.
В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.
Простые и составные числа – определения и примеры
Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.
Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.
Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.
Простые числа – это натуральные числа, имеющие только два положительных делителя.
Составное число – это натуральное число, имеющее более двух положительных делителей.
Натуральные числа, которые не являются простыми, называют составными.
Таблица простых чисел
Для того, чтобы было проще использовать простые числа, необходимо использовать таблицу:
Рассмотрим теорему, которая объясняет последнее утверждение.
Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.
Простых чисел бесконечно много.
Видно, что может быть найдено любое простое число среди любого количества заданных простых чисел. Отсюда следует, что простых чисел бесконечно много.
Решето Эратосфена
Данный способ неудобный и долгий. Таблицу составить можно, но придется потратить большое количество времени. Необходимо использовать признаки делимости, которые ускорят процесс нахождения делителей.
Перейдем к формулировке теоремы.
Данное число простое или составное?
Перед решением необходимо выяснять, является ли число простым или составным. Зачастую используются признаки делимости. Рассмотрим это на ниже приведенных примере.
Доказать что число 898989898989898989 является составным.
Ответ: 11723 является составным числом.
Что такое Простые числа
Простые числа — это натуральные числа, больше единицы, которые делятся без остатка только на 1 и на само себя. Например: 2, 3, 5, 7, 11, 13, 17, 19, 23. Единица не является ни простым числом, ни составным.
Последовательность простых чисел начинается с 2 и является бесконечной; наименьшее простое число — это 2 (делится на 1 и на самого себя).
Составные числа — это натуральные числа, у которых есть больше двух делителей (1, оно само и например, 2 и/или 3); это противоположность простым числам. Например: 4, 6, 9, 12 (все делятся на 2, на 3, на 1 и на само себя).
Все натуральные числа считаются либо простыми, либо составными (кроме 1).
Натуральные числа — это те числа, которые возникли натуральным образом при счёте предметов; например: 1, 2, 3, 4. (нет ни дробей, ни 0, ни чисел ниже 0).
Зачастую множество простых чисел в математике обозначается буквой P.