что влияет на скорость испарения жидкости
Ответим: от чего зависит скорость испарения жидкости и приведем примеры опытов для доказательства
Разбираясь с вопросом, от чего зависит скорость испарения жидкости, нужно рассматривать закономерности влагообмена, встречающиеся в повседневной жизни. Так, теплообмен напрямую влияет на улетучивание молекул любого раствора. Частицы легче отрываются от поверхности при достаточном запасе кинетической энергии. Последняя сообщается в процессе, когда мы пытаемся остудить чашку кофе или чая, обдувая поверхность стакана.
Физические процессы
Рассмотрим, от чего зависит скорость испарения жидкости при различных условиях. Влияние оказывают свет от солнца, ветер, состав раствора, температура. Сам физический процесс испарения можно представить как хаотичное движение невесомых шариков. Каждый из них обладает определенным запасом кинетической энергии. Получать последнюю они могут извне или от соседствующих молекул.
В результате выхода молекул из раствора получается газообразное вещество. Отсюда следует первое, от чего зависит скорость испарения жидкости — от плотности мельчайших частичек над поверхностью любого жидкого вещества. Но на весь процесс влияет и плотность самого раствора. Молекулам легче оторваться в очищенном от солей дистилляте, чем преодолевать давление тяжелых частиц.
Процесс испарения наблюдают из любого вещества: твердого, жидкого. Разрежение в воздухе облегчает выход частиц с поверхности, повышенная влажность тормозит их движение. Подогрев раствора на огне повышает обмен кинетической энергии между молекулами, помогая разрушать установившиеся связи.
От чего зависит скорость испарения жидкости? От площади поверхности, с которой будут вылетать молекулы. Так, с разлитой лужи вода исчезнет быстрее, чем из бутылки с узким горлышком. Ветер поможет высвободить наиболее кинетически заряженные частички.
Опыт № 1. Площадь
Скорость испарения жидкости зависит от площади поверхности сосуда, в котором она находится. Доказательством этому служит опыт, в котором подбирают несколько видов емкостей, различающихся по форме горлышка. Везде наливают одинаковое количество однородного раствора.
Горлышки открытые. Засекают время и по его истечении производят замер оставшегося объема жидкости в каждом сосуде. Составляется таблица, и по результатам несложно заметить, что наименьшее количество будет в самой широкой емкости. Однако учитывается еще много факторов: температура, движение и плотность воздуха в помещении.
Еще один простой опыт позволяет проверить, как зависит скорость испарения жидкости от площади. Нужно просто вылить воду из сосуда на пол и засечь время. Соответственно, можно увидеть, что разлитый объем практически моментально исчезнет, в отличие от жидкости в сосуде.
Опыт № 2. Источник движения воздуха
Скорость испарения увеличивается, если напротив поверхности установить источник движения воздуха. Помочь в этом может вентилятор или другой аналогичный прибор. Время сократится при использовании нагревательных элементов.
Фен способен испарить значительный объем за минуты, тогда как под воздействием вентилятора вода аналогичного объема будет исчезать целые сутки. Не только колебания воздуха влияют на выход молекул жидкости с поверхности, но и движение самого объема с жидкостью облегчает такой процесс.
Постоянное перемешивание жидкости в стакане помогает перераспределять энергию между частицами. Движение ускоряет процесс теплоотдачи от раствора воздушной среде, а это, соответственно, влияет на скорость испарения. Так, при помешивании горячего чая часть жидкости поднимается в виде пара.
Опыт № 3. Плотность среды
На скорость испарения влияет плотность среды — как самой жидкости, так и воздуха над ней. Проводят эксперимент: в одном сосуде будет вода с солью, во втором — отфильтрованная вода аналогичного объема. Через сутки соляной раствор изменит свой объем на незначительную часть по сравнению с количеством жидкости во втором сосуде.
В домах на морском побережье можно заметить, что постиранные вещи сохнут довольно долго. Это связано с повышенной влажностью воздуха. Соответственно, и испарение из сосуда в таком месте более длительное, чем вдалеке от моря, реки, озера.
Факторы, влияющие на скорость испарения жидкости.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
VI районная научно-практическая конференция
школьников Яшкинского района «Открытия юных исследователей»
Факторы, влияющие на скорость испарения жидкости.
автор: Лужкова Алина Сергеевна
МБОУ «СОШ №2Яшкинского
адрес:652010, пгт. Яшкино, ул. Пограничная,18
Локк Наталья Викторовна,
МБОУ «СОШ №2Яшкинского
адрес: 652010, пгт. Яшкино, ул.Мирная,12
Яшкинский район 2015
Механизм процесса испарения ………………………………………..3
Факторы, влияющие на скорость испарения жидкости….…………..4
1.4Роль испарения в природе и в жизни человека ……………..………..4
2.2 Результаты проведенных опытов ……………………………………..6
Цель исследования: исследовать зависимость скорости испарения воды от различных факторов среды.
Для достижения цели поставили следующие задачи:
изучить литературу по данному вопросу, материалы Интернет-сайтов;
установить опытным путем, какие факторы влияют на скорость испарения;
выяснить, какова роль испарения в природе и в жизни человека;
исследовать и проанализировать, что знают об испарении ученики нашего класса;
поделиться полученными знаниями с другими ребятами;
Объект исследования: испарение жидкости (воды)
Предмет исследования: факторы, влияющие на скорость испарения жидкости.
Гипотеза: скорость испарения зависит от рода вещества, площади поверхности жидкости и температуры воздуха, объема жидкости, наличие перемещающихся воздушных потоков над ее поверхностью.
Поиск необходимой информации в литературных источниках и сети Интернет.
Анализ и обработка информации.
Анкетирование, анализ и обобщение результатов анкетирования.
1.1 Что такое испарение?
Испарение – это процесс перехода вещества из жидкого состояния в газообразное. Обычно под испарением понимают переход жидкости в пар, происходящий со свободной поверхности жидкости. Испарение происходит с поверхности воды, почвы, растительности, льда, снега и т.д. за счет энергии, получаемой Землей от Солнца.
Процесс испарения состоит в том, что вода из жидкого или твердого состояния превращается в пар. Молекулы воды, находясь в непрерывном движении, преодолевают силу взаимного молекулярного притяжения и вылетают в воздух, находящийся над поверхностью воды.
Вылетевшие с поверхности воды молекулы образуют над ней пар. У оставшихся молекул воды при соударениях изменяются скорости, некоторые из молекул приобретают при этом скорость, достаточную для того, чтобы, оказавшись у поверхности, вылететь из жидкости. Этот процесс продолжается непрерывно, поэтому вода испаряется непрерывно. Таков механизм испарения.
1.3 Факторы, влияющие на скорость испарения жидкости
Существует несколько факторов, влияющих на скорость испарения жидкости.
1.Какая из луж, образовавшихся после дождя, высохнет быстрее: большая или маленькая? Скорость испарения жидкости зависит от объёма, поэтому меньшая лужа высохнет быстрее.
2. Где вода испарится быстрее: в круглой тарелке или в высоком кувшине? Скорость испарения жидкости зависит от площади ее поверхности: чем больше площадь поверхности, тем больше будет количество частиц, покидающих жидкость, и испарение будет происходить быстрее.
3.В какой день вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях, испаряется быстрее: солнечный или пасмурный? С увеличением температуры испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость и перейти в состояние, которое мы называем «газ».
4.Зачем жители полярных стран смазывают жиром лицо в сильный мороз? Скорость испарения зависит от рода жидкости, жир испаряется медленно, поэтому кожа лица не переохлаждается
5.Вы пьете чай, он очень горячий. Что вы сделаете, чтобы он остыл быстрее? Белье высыхает быстрее в какую погоду – в ветреную или тихую? Если воздух над жидкостью движется, то он сдувает, уносит молекулы, которые перешли из жидкости в газ, и вместе с тем освобождает пространство для следующих молекул. В этом случае процесс испарения ускоряется.
Таким образом, проанализировав литературу по теме, мы узнали, что скорость испарения зависит от ряда факторов.
1.4 Роль испарения в природе и в жизни человека
Главную роль в круговороте воды в природе играет испарение.Это непрерывный процесс. Испарение происходит с поверхности океана, суши и ее водоемов.
Испарение играет огромную роль в растительном, животном мире и в жизни человека. Оно предохраняет человека, животных и растения от перегрева.
Ни одно растение не может жить без воды. Она составляет от 70 до 95% сырой массы тела растения. Все процессы жизнедеятельности организма протекают с использованием воды: прорастание семян, рост и развитие взрослого растения, фотосинтез, образование плодов и семян. Важно, что при испарении поддерживается непрерывный ток воды по растению снизу вверх. Клетки листа, отдавшие воду, начинают активно её поглощать из сосудов жилок. Вместе с водой к клеткам поступают растворённые вещества. Следовательно, питание клетки прямо связано с испарением. При испарении организм растения охлаждается. Если процесс испарения нарушен, растение в потоках яркого солнечного света может пострадать от ожогов.
У растений засушливых мест, где воды в почве очень мало, а воздух горячий и сухой, имеются разнообразные приспособления, позволяющие уменьшить потерю влаги. У кактусов вместо листьев колючки; так как их поверхность небольшая, то испарение замедлено. У алоэ листья узкие, покрытые восковым налетом, предохраняющим от интенсивного испарения.
Для уравновешивания неизбежной потери воды за счет испарения многие животные всасывают ее через покровы тела в жидком или газообразном состоянии (амфибии, насекомые, клещи). В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с поверхности воздушных мешков испаряется влага, что способствует охлаждению организма. В связи с этим в жаркую погоду птицы открывают клюв.
Организм человека, с помощью испарения охлаждается. Для терморегуляции организма важную роль играет потоотделение. Оно обеспечивает постоянство температуры тела человека или животного. За счет испарения пота уменьшается внутренняя энергия, благодаря этому организм охлаждается.
На производстве испарение применяется для сушки деталей. В технике испарение применяется как средство для очистки веществ или разделения жидких смесей перегонкой (получение бензина, керосина). Процесс испарения также лежит в основе двигателей внутреннего сгорания, холодильных установок, а также в основе всех процессов сушки в сушильных камерах.
Глава II . Результаты проведенного исследования
Чтобы выяснить, знают ли одноклассники что-нибудь о процессе испарения, я провела анкетирование среди ребят (Приложение 1, 2). В анкетировании приняло участие 20 одноклассников. В результате анкетирования выяснили:
Чаще всего наблюдали процесс испарения:
2.2Результаты проведенных опытов.
Для исследования зависимости скорости испарения от различных факторов был проведен ряд опытов.
Проверка зависимости скорости испарения жидкости от её объема.
Оборудование: два одинаковых стакана, вода, мензурка.
Возьмем два одинаковых стакана и нальем в них воду в разных объемах. Поместим стаканы в одинаковые условия и будем наблюдать
Вывод: скорость испарения зависит от объёма жидкости (массы). При одинаковой температуре воды и внешних условиях в обоих стаканах вода испарилась с одинаковой скоростью. В том стакане, где объём воды был меньше, она испарилась раньше, чем в том, где объём был больше;
Проверка зависимости скорости испарения жидкости от величины её поверхности.
Оборудование: стакан, тарелка, вода, мензурка.
Для проведения опыта возьмём стакан и тарелку. Нальём в них воду одинаковой массы и температуры. Поместим в среду с одинаковыми условиями. Будем наблюдать.
Вывод : по результатам опыта видно, что скорость испарения зависит от величины её поверхности. Если в узкий и широкий сосуд налить одинаковый объём воды, то можно увидеть, что в широком сосуде вода испаряется быстрее. Следовательно, чем больше площадь поверхности, тем большее число молекул вылетает в воздух. Значит, скорость испарения зависит от площади поверхности жидкости.
Проверка зависимости скорости испарения жидкости от температуры.
Оборудование: 2 одинаковых стакана, вода, мензурка.
Возьмем 2 одинаковых стакана и нальем в них воду одинаковой массы и температуры. Поставим 1 стакан с водой в теплое место, а другой в более прохладное место и будем наблюдать до тех пор, пока вода в одном из стаканов не испарится.
Испарение
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.
Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Факторы, влияющие на скорость испарения воды
«Московская городская педагогическая гимназия-лаборатория»
Факторы, влияющие на скорость испарения воды
Определение испарения. Цель работы. Актуальность работы Описание структуры работы.
Механизм испарения на молекулярном уровне. Факторы, влияющие на скорость испарения.
2.1 Влияние на скорость испарения температуры воды.
2.1.1 Неравномерность прогрева воды.
2.1.2 Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.
2.1.3 Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.
2.2 Влияние влажности воздуха.
2.2.1 Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».
2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.
2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.
2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.
Испарение – процесс перехода вещества из жидкого состояния в газообразное, происходящий с поглощением тепла.
Цель данной работы: выявить факторы, влияющие на скорость испарения воды.
1. При испарении расходуется большое количество теплоты, следовательно, этот процесс можно использовать для охлаждения.
2. Интенсивность испарения существенно влияет на влажность воздуха, которая является определяющей во многих процессах.
3. Изучение механизмов испарения позволит построить более правдоподобные модели распределения температуры и влажности, т. е. позволит более точно предсказывать различные климатические процессы. Для расчета таких моделей используются современные вычислительные системы, но для их правильной работы необходимо детальное понимание всех процессов, влияющих на формирование погоды.
В данной работе мы рассмотрим факторы, влияющие на скорость испарения воды и их взаимосвязь.
На испарение влияет много факторов, но наиболее значимые из них температура поверхности воды и влажность воздуха над поверхностью воды. На каждый из этих факторов влияет ряд других:
1. Температура воды. На нее влияет температура окружающего воздуха. Теплообмен от воздуха к воде и обратно осуществляется теплопередачей (непосредственной передачей тепла без перемешивания) и конвекцией. Конвекция в свою очередь может проходить в разных режимах: ламинарном и турбулентном. Ламинарный – это режим, при котором жидкость перемещается стационарными струями без перемешивания. Турбулентный – это режим, при котором жидкость беспорядочно перемешивается из-за большой разности температур.
2. Влажность воздуха над поверхностью воды. На нее влияет интенсивность испарения воды (чем больше пара вышло из воды, тем больше его в воздухе), площадь поверхности (чем больше площадь поверхности, тем больше пара выходит из воды), ветер или другие формы конвекции в воздухе (насколько быстро удаляются водяные пары от поверхности воды).
Далее эти факторы будут рассматриваться более подробно.
Механизм испарения на молекулярном уровне.
Молекулы воды, которые имеют достаточную кинетическую энергию и находятся близко к поверхности, способны оторваться от остальных молекул воды, т. е. происходит испарение. Если быстрые молекулы находятся в толще воды, а не на поверхности, то, ударяясь о другие молекулы, совершают над ними работу и теряют свою энергию. Быстрые молекулы воды, которые оторвались от поверхности воды, уносят энергию с собой, поэтому внутренняя энергия воды понижается, и она охлаждается.
Некоторые молекулы водяного пара, двигаясь хаотически, возвращаются в жидкость. Этот процесс называется конденсацией. Скорость конденсации зависит от концентрации молекул водяного пара.
2. Факторы, влияющие на скорость испарения.
2.1. Влияние на скорость испарения температуры воды.
На скорость испарения влияют многие факторы, но главный из них – температура поверхности воды. Чем больше температура, тем больше средняя скорость молекул, и, следовательно, больше молекул с большими скоростями, которые способны вылететь с поверхности. Вода не имеет одинаковую температуру во всей толще, для изучения испарения важна температура именно на поверхности. В свою очередь на эту температуру влияет целый ряд факторов:
1. Температура в толще воды. Количество теплоты из толщи воды к поверхности может переноситься двумя способами: теплопередачей или конвекцией. Конвекция начинается тогда, когда жидкость имеет большую температуру на глубине, в этом случае расширяясь при большей температуре, она начинает подниматься вверх. В воде при испарении необходимое для конвекции распределение температур происходит из-за того, что на поверхности вода, испаряясь, становится холоднее.
2. Температура воздуха обычно больше, чем температура на поверхности воды, потому что на поверхности происходит испарение и вода охлаждается. Поэтому, как правило, происходит подвод тепла из воздуха к поверхности. В случае если температура воздуха меньше, то тепловой поток идет в обратную сторону, причем скорость теплоотвода зависит от конвекции воздуха над поверхностью воды.
3. Интенсивность испарения влияет на температуру воды на поверхности. Чем больше интенсивность испарения, тем больше энергии унесли молекулы, и тем меньше температура поверхности. Чем меньше температура, тем меньше энергии в воде, и тем меньше интенсивность испарения.
Мы видим, что все указанные факторы тесно взаимосвязаны между собой: если увеличивается скорость испарения, температура поверхности жидкости уменьшается, следовательно, увеличивается теплообмен между поверхностью и толщей воды, с другой стороны, увеличивается теплообмен между поверхностью воды и воздухом, а также конвекционный поток над водой.
Безусловно, полностью учесть все эти факторы может только компьютерная модель.
2.1.1 Неравномерность прогрева воды.
Рассмотрим более детально процесс передачи тепла в толще воды. Практически всегда в не идеализированных условиях температура в разных местах жидкости неодинакова: вода испаряется только сверху, следовательно, охлаждается только сверху. Нагрев воды также происходит обычно неравномерно. Например, солнечные лучи проникают в толщу воды и по-разному нагревают их в зависимости от прозрачности воды. Любой другой источник более высокой или низкой температуры также передает тепло неравномерно, например рука держащего сосуд человека.
Если температура воды сверху меньше, то начинает происходить конвекция: холодная вода тяжелее горячей, поэтому холодная вода опускается, а горячая – поднимается. Но так как жидкость не перемешивается полностью, а перемещается целыми объемами, температура распределяется неравномерно. В случае возникновения конвекции жидкость начинает двигаться целыми «кусками». Если в этом случае поместить термометр в некоторую точку жидкости, он покажет колебание температуры, которое и будет отражать это движение «кусков» горячей или холодной жидкости.
2.1.2. Конвекция. Ламинарный и турбулентный режим. Число Рэлея. Зависимость типа режима перемешивания жидкости со скоростью передачи энергии.
Как уже говорилось выше, конвекция – это явление, при котором теплообмен происходит путем перемешивания вещества. С ее помощью горячая вода перемещается из толщи к поверхности, а остывшая из-за испарения вода, в свою очередь, перемещается от поверхности ко дну.
Жидкость, при нагревании снизу или охлаждении сверху может перемешиваться в двух режимах: ламинарном и турбулентном.
Ламинарный поток — это поток, при котором жидкость перемещается стационарными струями без перемешивания и беспорядочных быстрых изменений скорости. В случае ламинарных потоков движение жидкости можно изобразить при помощи линий тока: воображаемых линий, вдоль которых перемещаются частицы воды.
Турбулентный поток – это поток, при котором из-за большой разности температур жидкость беспорядочно перемешивается. В этом случае невозможно указать определенную траекторию движения частицы.
В случае турбулентного потока происходит более равномерное перемешивание всей жидкости. Если в случае ламинарного перемешивания перемещаются целые «куски» определенной температуры, то в случае турбулентного режима жидкость имеет почти одинаковую температуру по всему объему.
Вид режима (ламинарный или турбулентный) определяется числом Релея. Число Рэлея – это безразмерная величина, оно считается по формуле
, где
g — ускорение свободного падения; измеряется в м/с2.
β — коэффициент теплового расширения жидкости; вычисляется по формуле
, где ΔV – изменение объема тела, V – начальный объем тела, ΔT – изменение температуры; измеряется в К-1. [1]
ΔT — разность температур между поверхностью и толщей воды; измеряется в К.
L — определяющий линейный размер поверхности теплообмена; измеряется в м. Это максимальная длина на поверхности сосуда, например для круглого сосуда это диаметр, для прямоугольного – диагональ и т. д.
ν — кинематическая вязкость жидкости; численно равна ν = 0,000183/(ρ(1 + 0,0337t + 0,000221t2)), где t – температура и ρ – плотность жидкости; измеряется в 10-6 м2/с. [2]
χ — температуропроводность жидкости; вычисляется по формуле , где
— теплопроводность, cp — удельная теплоемкость, ρ — плотность; измеряется в м2/с. [3] [4]
Для воды и цилиндрического сосуда высотой 2,2 см и радиусом 12,5 см при комнатной температуре (20) ниже приведены данные для расчета числа Рэлея и сами расчеты:
t = 20
= 0,6 Вт/(м*К) [9]
χ = /(cp*ρ) = 1,437e-7 м2/c
Ra = (g*β*ΔT*L3)/(ν*χ) = 3669
Разность температур 0,2° была рассчитана программой, которая создает модели испаряющейся воды.
2.1.3. Температура воздуха и ее влияние на температуру воды. Числа Рэлея в воздухе и тип режима перемешивания воздуха.
На температуру поверхности воды также влияет и температура окружающего воздуха.
Если температура воздуха отличается от температуры воды, происходит теплообмен между водой и воздухом за счет теплопередачи и конвекции.
Конвекция в воздухе также определяется числом Рэлея. Там оно меньше на один-два порядка, потому что вязкость и температуропроводность больше у воздуха, чем у воды.
Ниже приведены данные для расчета числа Рэлея и сами расчеты для воздуха:
t = 20
= 0.0257 Вт/(м*К)
χ = /(cp*ρ) = 2,122e-5 м2/c
Ra = (g*β*ΔT*L3)/(ν*χ) = 40990,072
Конвекция в воздухе
На конвекцию также влияет влавжность воздуха. Т. к. водяные пары имеют плотность меньше, чем плотность воздуха, влажный воздух легче сухого и начинает подниматься вверх. Таким образом, чем выше скорость испарения, тем выше влажность воздуха, тем интенсивнее конвекция.
2.2. Влияние влажности воздуха.
Как уже говорилось, при увеличении влажности воздуха над поверхностью воды, увеличивается конденсация т. е. уменьшается интенсивность испарения. Поэтому попытаемся разобраться, какие факторы влияют на величину влажности воздуха, для этого сначала сформулируем точное определение влажности.
Абсолютная и относительная влажность.
Абсолютная влажность воздуха – это масса водяного пара, содержащегося в кубическом метре воздуха. Из-за малой величины обычно измеряется в г/м3. Относительная влажность воздуха – это отношение текущей абсолютной влажности к максимально возможной абсолютной влажности при данной температуре. Чем выше температура, тем выше максимально возможная абсолютная влажность.
2.2.1. Связь влажности воздуха у поверхности воды с влажностью воздуха «на бесконечности».
Воздухом «на бесконечности» называется воздух, находящийся на таком удалении от поверхности жидкости, что его влажность не зависит от наличия этой поверхности. Влажность воздуха «на бесконечности» безусловно, влияет на влажность воздуха у поверхности. Пар с поверхности воды вытесняет пар, который уже был в воздухе, тем самым стремиться увеличить влажность «на бесконечности». Чем больше влажность воздуха на бесконечности, тем сложнее вытеснить поднимающемуся пару находящийся на бесконечности» пар, и тем менее интенсивно происходит испарение.
2.2.2 Связь влажности воздуха у поверхности воды со скоростью испарения.
При высокой влажности, по сути, испарение происходит с той же скоростью, но конденсация происходит быстрее, и, следовательно, можно считать, что испарение происходит медленнее. Конденсация – это обратный испарению процесс, то есть переход из газообразного состояния в жидкое.
2.2.3 Связь влажности воздуха у поверхности воды со скоростью оттока водяных паров от поверхности.
Водяные пары, если их влажность отличается от влажности на бесконечности, перемещаются от поверхности воды при помощи двух процессов: диффузии и конвекции.
Диффузия – это процесс выравнивания концентраций веществ в некотором объеме путем проникновения молекул одного вещества в другое. Она зависит от скорости движения молекул, то есть от температуры среды. Диффузия в газах проходит довольно быстро.
Конвекция – это явление передачи тепла путем перемешивания вещества. Вещество перемешивается из-за разности температур, которая может быть вызвана испарением. Конвекция, по сравнению с диффузией происходит медленно.
Можно также отметить, что ветер, уносящий пар от поверхности, влияет на скорость испарения сильнее предыдущих двух факторов.
2.2.4 Связь влажности воздуха у поверхности с геометрией поверхности.
Подведем итог: на скорость испарения влияют главным образом два фактора: температура поверхности воды и влажность воздуха над поверхностью, но на эти два фактора влияют множество других. На диаграмме представлена общая взаимосвязь этих факторов между собой.
В нашей работе мы изучили факторы, влияющие на скорость испарения воды. В результате выяснено, что на скорость испарения влияют главным образом температура на поверхности воды и влажность воздуха над сосудом, но также влияют и площадь поверхности, конвекция, диффузия, влажность «на бесконечности».