что влияет на ростовые процессы у растений
Влияние факторов внешней среды на рост и развитие растений. Фотопериодизм
На рост растений влияют следующие факторы внешней среды: темпе-ратура (величина, периодичность); влажность; минеральные вещества; газовый состав воздуха; механические воздействия; свет (интенсивность, качество, продолжительность, периодичность); сила тяжести и др.
1. Свет. Органы растений, растущие без света называют этиолированными. При недостатке света у растений происходят глубокие анатомические и физиологические изменения: плохо развиваются механические ткани, устьица, не развита столбчатая паренхима, отсутствуют хлоропласты, выражены длинные междоузлия. При освещении таких органов происходит остановка удлинения междоузлий, формирование механических тканей, синтез хлорофилла и др. Большое влияние на рост оказывает спектральный состав света: а) коротковолновая часть света стимулирует процессы деления клеток, но задерживает фазу растяжения клеток; б) длинноволновая часть подавляет деление клеток, процессы развития и формирования листьев, стебли вытягиваются, отличаются рыхлостью, полное отсутствие механических тканей, усиливается линейный рост клеток.
Фотопериодизм –общее свойство всех живых организмов реагировать на суточный ритм освещения, то есть на соотношение светлого и темного периода суток. Фотопериодизм выражается в изменение процессов роста и развития. По особенностям фотопериодизма зеленые растения подразделяются на:
1) растения длинного дня – которым для нормального происхождения всех стадий развития требуется длинный световой день – не менее 12 часов (лен, пшеница и др.);
2) растения короткого дня – полностью развиваются только при коротком световом дне (просо, кукуруза, виноград, хлопчатник);
3) нейтральные растения – развитие которых не зависит от продолжительности светового и темнового периодов (подсолнечник, гречиха, горох).
Фотопериодизм – важная адаптация, обеспечивающая заблаговременную подготовку к неблагоприятным зимним условиям, к периоду покоя и зависит от спектрального состава света.
2. Температура. Для растений разных климатических зон характерны свои температурные минимумы, оптимумы и максимумы. Различают три кардинальные точки влияния температур на растения:
► минимальная – точка ниже которой ростовые процессы прекращаются;
► максимальная – точка, выше которой ростовые процессы прекращаются;
► оптимальная – наиболее интенсивно идут процессы роста. Оптимальная температура наиболее благоприятна для роста.
У растений умеренной климатической зоны повышение температуры до 30-35 °С вызывает ускорение роста, выше – тормозит. На различных стадиях развития потребность в тепле различна. Устойчивость к низким температурам – важное приспособительное свойство.
3. Газовый состав воздуха. Концентрация кислорода большей частью не влияет на скорость роста, даже при затоплении рост некоторое время продолжается за счет использования кислорода воздухоносных тканей и нитратов. Увеличение концентрации углекислого газа до 0,3% вызывает усиление роста за счет ускорения процессов фотосинтеза, свыше – замедляет и прекращает рост.
4. Водный режим. Только в насыщенных водой клетках нормально протекают все процессы. Недостаток воды подавляет рост, для таких органов характерна мелкоклеточность, длительный избыток воды вызывает остановку роста.
5. Минеральное питание. Азот – ускоряет рост, но задерживает дифференцировку тканей, закладку цветков. Калий, бор существенного влияния на рост не оказывает, но ускоряют цветение.
ВЛИЯНИЕ ГОРМОНОВ НА РОСТ И РАЗВИТИЕ РАСТЕНИЙ
Гормоны растений, или фитогормоны, вырабатываемые растениями органические вещества, отличные от питательных веществ и образующиеся обычно не там, где проявляется их действие, а в других частях растения. Эти вещества в малых концентрациях регулируют рост растений и их физиологические реакции на различные воздействия. В последние годы ряд фитогормонов удалось синтезировать, и теперь они находят применение в сельскохозяйственном производстве. Их используют, в частности, для борьбы с сорняками и для получения бессемянных плодов.
Растительный организм – это не просто масса клеток, беспорядочно растущих и размножающихся; растения и в морфологическом, и в функциональном смысле являются высокоорганизованными формами. Фитогормоны координируют процессы роста растений. Особенно отчетливо эта способность гормонов регулировать рост проявляется в опытах с культурами растительных тканей. Если выделить из растения живые клетки, сохранившие способность делиться, то при наличии необходимых питательных веществ и гормонов они начнут активно расти. Но если при этом правильное соотношение различных гормонов не будет в точности соблюдено, то рост окажется неконтролируемым и мы получим клеточную массу, напоминающую опухолевую ткань, т.е. полностью лишенную способности к дифференцировке и формированию структур. В то же время, надлежащим образом изменяя соотношение и концентрации гормонов в культуральной среде, экспериментатор может вырастить из одной-единственной клетки целое растение с корнями, стеблем и всеми прочими органами.
Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов – соединений белковой природы, контролирующих биохимические и физиологические процессы.
Были открыты только в 1920-х годах, так что все сведения о них получены сравнительно недавно. Однако еще Ю.Сакс и Ч.Дарвин в 1880 пришли к мысли о существовании такого рода веществ. Дарвин, изучавший влияние света на рост растений, писал в своей книге Способность к движению у растений (The Power of Movement in Plants): «Когда проростки свободно выставлены на боковой свет, то из верхней части в нижнюю передается какое-то влияние, заставляющее последнюю изгибаться». Говоря о влиянии силы тяжести на корни растения, он пришел к заключению, что «только кончик (корня) чувствителен к этому воздействию и передает некоторое влияние или стимул в соседние части, заставляя их изгибаться».
В течение 1920–1930-х годов гормон, ответственный за реакции, которые наблюдал Дарвин, был выделен и идентифицирован как индолил-3-уксусная кислота (ИУК). Работы эти выполнили в Голландии Ф.Вент, Ф.Кёгль и А.Хаген-Смит. Примерно в то же время японский исследователь Е.Куросава изучал вещества, вызывающие гипертрофированный рост риса. Теперь эти вещества известны как фитогормоны гиббереллины. Позже другие исследователи, работавшие с культурами растительных тканей и органов, обнаружили, что рост культур значительно ускоряется, если добавить к ним небольшие количества кокосового молока. Поиски фактора, вызывающего этот усиленный рост, привели к открытию гормонов, которые были названы цитокининами. [2]
2. Главные классы гормонов растений
Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.
Ауксины. Вещества, стимулирующие растяжение клеток растений, известны под общим названием «ауксины». Ауксины вырабатываются и накапливаются в высоких концентрациях в верхушечных меристемах (конусах нарастания побега и корня), т.е. в тех местах, где клетки особенно быстро делятся. Отсюда они перемещаются в другие части растений. Нанесенные на срез стебля ауксины ускоряют образование корней у черенков. Однако в чрезмерно больших дозах они подавляют корнеобразование. Вообще чувствительность к ауксинам у тканей корня значительно выше, чем у тканей стебля, так что дозы этих гормонов, наиболее благоприятные для роста стебля, обычно замедляют корнеобразование.
Это различие в чувствительности объясняет, почему верхушка горизонтально лежащего побега проявляет отрицательный геотропизм, т.е. изгибается кверху, а кончик корня – положительный геотропизм, т.е. изгибается к земле. Когда под действием силы тяжести ауксин скапливается на нижней стороне стебля, клетки этой нижней стороны растягиваются сильнее, чем клетки верхней стороны, и растущая верхушка стебля изгибается кверху. По-другому действует ауксин на корень. Скапливаясь на нижней его стороне, он подавляет здесь растяжение клеток. По сравнению с ними клетки на верхней стороне растягиваются сильнее, и кончик корня изгибается к земле.
Ауксины ответственны и за фототропизм – ростовые изгибы органов в ответ на одностороннее освещение. Поскольку под действием света распад ауксина в меристемах, по-видимому, несколько ускоряется, клетки на затененной стороне растягиваются сильнее, чем на освещенной, что заставляет верхушку побега изгибаться по направлению к источнику света.
Так называемое апикальное доминирование – явление, при котором присутствие верхушечной почки не дает пробуждаться боковым почкам, – тоже зависит от ауксинов. Результаты исследований позволяют считать, что ауксины в той концентрации, в какой они накапливаются в верхушечной почке, заставляют верхушку стебля расти, а перемещаясь вниз по стеблю, они тормозят рост боковых почек. Деревья, у которых апикальное доминирование выражено резко, как, например, у хвойных, имеют характерную устремленную вверх форму, в отличие от взрослых деревьев вяза или же клена.
После того как произошло опыление, стенка завязи и цветоложе быстро разрастаются; образуется крупный мясистый плод. Рост завязи связан с растяжением клеток – процессом, в котором участвуют ауксины. Теперь известно, что некоторые плоды можно получить и без опыления, если в подходящее время нанести ауксин на какой-нибудь орган цветка, например на рыльце. Такое образование плодов – без опыления – называют партенокарпией. Партенокарпические плоды лишены семян.
На плодоножке созревших плодов или на черешке старых листьев образуются ряды специализированных клеток, т.н. отделительный слой. Соединительная ткань между двумя рядами таких клеток постепенно разрыхляется, и плод или лист отделяется от растения. Это естественное отделение плодов или листьев от растения называется опадением; оно индуцируется изменениями концентрации ауксина в отделительном слое.
Из природных ауксинов шире всего распространена в растениях индолил-3-уксусная кислота (ИУК). Однако этот природный ауксин применяется в сельском хозяйстве значительно реже, чем такие синтетические ауксины, как индолилмасляная кислота, нафтилуксусная кислота и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Дело в том, что ИУК под действием ферментов растения непрерывно разрушается, тогда как синтетические соединения не подвержены ферментативному разрушению, и потому малые их дозы способны вызывать заметный и долго сохраняющийся эффект.
Синтетические ауксины находят широкое применение. Их используют для усиления корнеобразования у черенков, которые без этого плохо укореняются; для получения партенокарпических плодов, например у томатов в теплицах, где условия затрудняют опыление; для того чтобы вызвать у плодовых деревьев опадение части цветков и завязей (сохранившиеся плоды при таком «химическом прореживании» оказываются крупнее и лучше); чтобы предотвратить предуборочное опадение плодов у цитрусовых и некоторых семечковых, например у яблонь, т.е. чтобы отсрочить их естественное опадение. В высоких концентрациях синтетические ауксины применяются в качестве гербицидов для борьбы с некоторыми сорняками. [2]
Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота.
Важный физиологический эффект гиббереллинов – ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально.
Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост.
Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными.
Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву. [2]
Гормоны, известные как цитокинины, или кинины, стимулируют не растяжение, а деление клеток. Цитокинины образуются в корнях и отсюда поступают в побеги. Возможно, они синтезируются также в молодых листьях и почках. Первый открытый цитокинин – кинетин – был получен с использованием ДНК спермы сельди.
Цитокинины – «великие организаторы», регулирующие рост растений и обеспечивающие у высших растений нормальное развитие их формы и структур. В стерильных тканевых культурах добавление цитокининов в надлежащей концентрации вызывает дифференцировку; появляются примордии – нерасчлененные зачатки органов, т.е. группы клеток, из которых со временем развиваются различные части растения. Обнаружение этого факта в 1940 послужило основой для последующих успешных экспериментов. В начале 1960-х годов научились уже выращивать целые растения из одной недифференцированной клетки, помещенной в искусственную питательную среду.
Еще одно важное свойство цитокининов – их способность замедлять старение, что особенно ценно для зеленых листовых овощей. Цитокинины способствуют удержанию в клетках ряда веществ, в частности аминокислот, которые могут быть направлены на ресинтез белков, необходимых для роста растений и обновления его тканей. Благодаря этому замедляются старение и пожелтение, т.е. листовые овощи не так быстро теряют товарный вид. В настоящее время предпринимаются попытки использовать один из синтетических цитокининов, а именно бензиладенин, в качестве ингибитора старения многих зеленых овощей, например салата, брокколи и сельдерея.
Гормоны цветения. Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента.
Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях.
Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.
Дормины. Дормины – это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество «абсцизин II». По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытому Ф.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.
Витамины группы В. К фитогормонам иногда относят и некоторые витамины группы В, а именно тиамин, ниацин (никотиновую кислоту) и пиридоксин. Эти вещества, образующиеся в листьях, регулируют не столько формообразовательные процессы, сколько рост и питание растений.
Синтетические ретарданты. Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества – фосфон, цикоцел и алар. [1]
5. Влияние гормонов (фитогормонов, ауксинов) и стимуляторов на рост растений
В росте растений важную роль играют гормоны роста(фитогормоны). Этим веществам в отличие от витаминов уже нельзя приписать питательной функции. Они влияют прежде всего на протоплазму эмбриональной молодой клетки, вызывая в ней изменения, приводящие клетки в конечном счете к таким сложным явлениям, как рост оболочки и деление клеток.
Гормоны роста образуются в результате протекающего в растительной клетке обмена веществ. Они являются производными жизнедеятельности организма и играют вспомогательную, а не основную функцию в ростовых процессах растения.
Рост растения протекает только при наличии целого ряда условий. Для этого необходимы: свет, подходящая температураивлажностьпочвы, наличиеорганических и минеральныхпитательных веществ, определенное значение pH и т. д. В комплексе всех этих условий играют роль и гормоны роста, несущие подобно ферментам, специализированную функцию в ростовых процессах. При помощи гормонов роста (ауксинов) у растений увеличивается пластичность клеточной оболочки. Такова, по-видимому, роль ауксина и, в частности, гетероауксина β-индолил-уксусной кислоты, имеющей состав C10H9O3N). Гетероауксину приписывают основную роль в стимуляции деления клеток и в увеличении пластичности, растяжимости оболочки, хотя самый механизм этого влияния на оболочку до сих пор неясен.
Интересно, что, помимо гормонов, на рост растений могут оказать стимулирующие влияние и синтетические вещества, получившие название стимуляторов роста. К этим веществам относятся такие соединения, как: α-нафтил-уксусная кислота, β-индолил-масляная кислота и др., которые в растениях не встречаются. Следует подчеркнуть, что эти вещества не вызывают чего-то принципиально нового, а только ускоряют течение процессов, которые и без этого протекают в организмах. Особенное значение стимуляторы роста приобретают при укоренении черенков. Воздействием слабого водного раствора стимулятора в течение 24 часов можно значительно ускорить и усилить процесс корнеобразования. Таким образом, применение стимуляторов роста имеет значение для ускоренного черенкования древесных и кустарниковых пород в производстве (размножение плодовых, ягодных и других культур). [5]
Клетка должна не только поддерживать собственную целостность, но и функционировать согласованно с другими клетками организма растения, поэтому между клетками происходит обмен информацией. Одна группа клеток при этом становится «отправителями» сигнала, а другая воспринимает его. Если сигнал химической природы, молекулу с сигнальной функцией называют первичным мессенджером.
Растительная клетка воспринимает разнообразные химические стимулы и реагирует на них. Физиологический ответ вызывают изменение концентрации сахаров во флоэмном токе, олгигомерные сахара и фрагменты хитина, индолилуксусная кислота, брассиностероиды и др. Среди обширного списка первичных мессенджеров можно выделить гормоны растений.
Вещество можно отнести к гормонам, если оно обладает следующими свойствами:
·вызывает специфический физиологический ответ; особенность растительных гормонов в том, что они запускают крупные программы развития не только на уровне клеток, но и на уровне тканей, органов, целого растения;
·синтезируется в растении одной группой клеток, а отвечает на него другая группа (разобщено место синтеза и место действия, т.е. сигнальное вещество транспортируется). К синтезу гормонов потенциально способна любая клетка растений; как правило фитогормоны являются низкомолекулярными соединениями (не более 2 кДа);
·практически не играет роли в основном метаболизме клетки, а используется лишь для сигнальных целей;
Иногда эти свойства расширяют:
Перечисленные свойства позволяют ограничить круг веществ, традиционно считающихся растительными гормонами (фитогормонами): ауксины, цитокинины, гиббереллины, абсцизины, этилен. Часто к ним добавляют брассиностероиды, жасминовую кислоту (жасмонат), салициловую кислоты, некоторые фенольные соединения и др. Однако всеми классическими свойствами обладают немногие гормоны, например ауксины. Абсцизины обычно действуют в точке синтеза, распространяясь лишь на небольшое расстояние. Этилен транспортируется только в виде предшественника; фенолы, салициловая и жасминовая кислоты действуют в концентрациях более 10^(-5) моль/л.
7. История изучения ауксинов
8.Биосинтез и деградация ауксинов
Для исследования метаболических путей, ведущих от триптофана к ИУК, получены мутанты, не способные к синтезу триптофана, тем не менее у мутантов синтез ауксина не менялся. Очевидно, есть и другие пути синтеза ИУК, в которых триптофан не участвует. В некоторых растениях таких путей несколько: триптофановый и «нетриптофановые». После образования ИУК может связываться с сахарами, аминокислотами или небольшими белками, образуя неактивные (запасные) формы. [3]
Таким образом по мере удаления от точки синтеза концентрация ауксинов падает за счет необратимого окисления и связывания в неактивные формы.[5]
9. Физиологические проявления действия ауксинов
Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. ИУК стимулирует выход протонов в клеточную стенку и увеличивает её растяжимость. Под влиянием оптимальной концентрации ИУК рост в длину декапитированных отрезком стеблей гороха увеличивается более, чем в два раза. Ауксины в некоторых случаях стимулируют деление клеток, например камбия. Под влиянием ауксинов может измениться направление дифференциации клеток. Ауксин вызывает дифференциацию ксилемы, индуцирует корнеобразование.
Действие ауксина находится в зависимости от его концентрации. Повышение концентрации ауксина выше оптимальной вызывает торможение роста. При этом для разных растений и для неодинаковых организмов оптимальная концентрация ауксина резко различна. Одна и та же концентрация может усилить рост одних органов и затормозить другие. Так, оптимальная концентрация для роста стебля составляет около 10мг, тогда как для корня всего 0,01мг ИУК на 1 кг массы растения. Концентрация ауксинов, усиливающая рост злаков, резко тормозит рост многих двудольных растений. Это может быть связано с тем, что ауксин стимулирует синтез другого фитогормона, ингибирующего рост, а именно этилена.
При всех физиологических проявлениях ауксины усиливают поступление воды и питательных веществ (аттрагирующее влияние). Имеются многочисленные данные, что ауксины являются регуляторами притока воды и питательных веществ. Ауксины влияют на распределение питательных веществ в растении. При внесении извне ауксинов или их синтетических аналогов они концентрируются в отдельных органах и клетках. Это вызывает приток к этим органам воды и питательных веществ и, как следствие, их усиленный рост. Одновременно рост других органов, содержащих меньше ауксинов, ослабляется, поскольку питательные вещества к ним поступают в меньшем количестве. Так, при обработке фитогормонами типа ауксина цветков томата происходит усиленное разрастание завязей, приток к ним питательных веществ значительно повышается, а рост боковых побегов тормозится. Общий вынос питательных веществ при этом не изменяется. Из этих опытов следует, что гормоны типа ауксина вызывают перераспределение питательных веществ в растении. В некоторых случаях ауксин может вызывать усиление притока питательных веществ из внешней среды.[5]
Существуют разные гипотезы, объясняющие действие ауксина на передвижение веществ. Не вызывает сомнения, что транспорт веществ по растительному организму определенным образом связан с напряженностью энергетического обмена. В этой связи важно отметить, что ещё в 1933 г. появились исследования, показывающие, что под влиянием ауксина интенсивность дыхания растёт. В отсутствие кислорода действие ауксина или не проявляется, или значительно ослабевает. На различных объектах установлено, что влияние ауксина на повышение интенсивности дыхания опережает во времени его действие на ростовые процессы. Под влиянием ИУК возрастает сопряженность окисления и фосфорилирования (коэффициент Р/О) и содержание в клетках АТЫ. Это даёт основание считать, что ИУК увеличивает энергетическую эффективность дыхания растений. Под влиянием ИУК возрастает и энергетической заряд клетки (отношение АТФ + АДФ к АМФ). Известно, что даже небольшие сдвиги в энергетическом потенциале клетки приводят к заметным изменениям в скорости различных ферментативных реакций. Положительные сдвиги в энергетическом обмене вызывают усиление передвижения питательных веществ и воды, что является одной из причин усиления роста растений. Решение вопроса о причинах усиления образования АТФ под влиянием ИУК связано с изучением первичных механизмов регуляторного влияния этого фитогормона.[4]
Рейвен П., Эверт Р., Айкхорн Э. Современная ботаника, тт. 1–2. М., 1990
Гормоны растений. [Электронный ресурс] URL: http://worldofschool.ru