что влияет на качество электрической энергии
Показатели качества электроэнергии в электрических сетях
В соответствии с ГОСТ 13109-87 различают основные и дополнительные показатели качества электроэнергии.
2) размах изменения напряжения ( δ U t, %);
8) длительность провала напряжения ( Δ t пр, с) ;
9) импульсное напряжение ( U имп, В, кВ) ;
1) коэффициент амплитудной модуляции напряжений ( k мод);
2) коэффициент небаланса междуфазных напряжений ( k неб.м);
3) коэффициент небаланса фазных напряжений ( k неб.ф).
Отметим допустимые значения названных показателей качества электроэнергии, выражения для их определения и области применения. В течение 95% времени суток (22,8 ч) показатели качества электроэнергии не должны выходить за пределы нормально допустимых значений, а в течение всего времени, включая поелсаварийные режимы, они должны находиться в пределах максимально допустимых значений.
Контроль качества электроэнергии в характерных точках электрических сетей осуществляется персоналом предприятия электрических сетей. При этом длительность измерения показателя качества электроэнергии должна составлять не менее суток.
Отклонение напряжения это один из самых важных показателей качества электроэнергии. Отклонение напряжения находится по формуле
Снижение освещенности рабочих мест происходит при уменьшении напряжения, что приводит к снижению производительности труда работающих и ухудшению их зрения. При больших снижениях напряжения люминесцентные лампы не загораются или мигают, что приводит к сокращению срока их службы. При повышении напряжения срок службы ламп накаливания резко снижается.
От уровня напряжения зависит скорость вращения асинхронных электродвигателей и, следовательно, их производительность, а также потребляемая реактивная мощность. Последнее отражается на величине потерь напряжения и мощности на участках сети.
Снижение напряжения приводит к увеличению длительности технологического процесса в электротермических и электролизных установках, а также к невозможности устойчивого приема в коммунальных сетях телевизионных передач. В последнем случае применяются так называемые стабилизаторы напряжения, которые сами потребляют значительную реактивную мощность и у которых имеются потери мощности в стали. На их изготовление расходуется дефицитная трансформаторная сталь.
При этом должно применяться и так называемое местное регулирование напряжения в каждом трансформаторном пункте путем установки переключателя ответвлений распределительных трансформаторов в соответствующее положение. В сочетании с централизованным (в ЦП) и указанным местным регулированием напряжения применяются регулируемые и нерегулируемые конденсаторные установки, также относящиеся к средствам местного регулирования напряжения.
Размах изменения напряжения
Размах изменения напряжения представляет собой разность между амплитудными или действующими значениями напряжения до и после одиночного изменения напряжения и определяется по формуле
К размахам изменения напряжения относят одиночные изменения напряжения любой формы с частотой повторения от двух раз в минуту (1/30 Гц) до одного раза в час, имеющие среднюю скорость изменения напряжения более 0,1% в секунду (для ламп накаливания) и 0,2% в секунду для остальных приемников.
Быстрые изменения напряжения вызываются ударным режимом работы двигателей металлургических прокатных станов тяговых установок железных дорог, луговых сталеплавильных печей, сварочной аппаратуры, а также частыми пусками мощных короткозамкнутых асинхронных электродвигателей, когда их пусковая реактивная мощность составляет несколько процентов мощности короткого замыкания.
Допускаемые размахи колебаний приведены на рис. 1.
Для снижения размаха изменения напряжения в осветительной сети применяют раздельное питание приемников осветительной сети и силовой нагрузки от разных силовых трансформаторов, продольную емкостную компенсацию питающей сети, а также синхронные электродвигатели и искусственные источники реактивной мощности (реакторы или конденсаторные батареи, ток которых формируется с помощью управляемых вентилей для получения требуемой реактивной мощности).
Доза колебаний напряжения
Доза колебаний напряжения идентична размаху изменения напряжения и в действующих электрических сетях вводится по мере их оснащения соответствующими приборами. При использовании показателя «доза колебаний напряжения» оценка допустимости размаха изменения напряжения может не производиться, так как рассматриваемые показатели взаимозаменяемы.
Доза колебаний напряжения также представляет собой интегральную характеристику колебаний напряжения, вызывающих у человека накапливающееся за установленный период времени раздражение из-за миганий света в диапазоне частот от 0,5 до 0,25 Гц.
Коэффициент несинусоидальности кривой напряжения
Высшие гармоники в системе электроснабжения вызывают дополнительные потери энергии, сокращают срок службы косинусных конденсаторных батарей, электродвигателей и трансформаторов, приводят к трудностям при наладке релейной защиты и сигнализации, а также эксплуатации электроприводов с тиристорным управлением и т. д.
Содержание высших гармоник в электрической сети характеризуется коэффициентом несинусоидальности кривой напряжения k нс U который определяется по выражению
Для снижения высших гармоник применяются силовые фильтры, представляющие собой последовательное соединение индуктивного и емкостного сопротивлений, настроенных в резонанс на определенную гармонику. С целью исключения гармоник низших частот применяют преобразовательные установки с большим числом фаз.
Несимметрия напряжений возникает из-за нагрузки однофазных электроприемников. Так как распределительные сети напряжением выше 1 кВ работают с изолированной или компенсированной нейтралью, то несиммегрия напряжений обусловлена появлением напряжения обратной последовательности. Несимметрия проявляется в виде неравенства линейных и фазных напряжений и характеризуется коэффициентом обратной последовательности напряжений :
В сетях напряжением выше 1 кВ несимметрия напряжений проявляется в основном из-за однофазных электротермических установок (дуговых печей косвенного действия, печей сопротивления, индукционных канальных печей, установок электрошлакового переплава и др.
Наличие напряжения обратной последовательности приводит к дополнительному нагреву обмоток возбуждении синхронных генераторов и увеличению их вибрации, к дополнительному нагреву электродвигателей и резкому сокращению срока службы их изоляции, снижению реактивной мощности, генерируемой силовыми конденсаторами, дополнительному нагреву линий и трансформаторов? увеличению количества ложных срабатываний релейной защиты и т д.
Влияние несимметрии значительно уменьшается при питании однофазных электроприемников от отдельных трансформаторов, а также при применении управляемых и неуправляемых симметрирующих устройств, компенсирующих эквивалентный ток обратной последовательности, потребляемый однофазными нагрузками.
Коэффициент нулевой последовательности напряжений k0U = ( U0(1)/U н.ф.) х 100%,
Величина U0(1) определяется измерением трех фазных напряжений основной частоты, т. е.
Допустимое значение U0(1) ограничивается требованиями, предъявляемыми к отклонению напряжения, которые удовлетворяются коэффициентом нулевой последовательности, равным 2% в качестве нормального уровня и 4% максимального уровня.
Провал напряжения и интенсивность провалов напряжения
Рис. 2. Длительность и глубина провала напряжения
Значение Δ t пр составляет от нескольких периодов до нескольких десятков секунд. Провал напряжения характеризуется интенсивностью и глубиной провала δ Uпр, представляющей собой разность между номинальным значением напряжения и минимальным действующим значением напряжения Umin в течение провала напряжения, и выражается в процентах номинального значения напряжения или в абсолютных единицах.
Величина δ Uпр определяется следующим образом:
К провалам напряжения, возникающим в большинстве случаев при коротких замыканиях в сети, чувствительны некоторые виды элекгропрнемников (ЭВМ, силовая электроника), поэтому в проектах электроснабжения таких приемников должны предусматриваться меры по снижению длительности, интенсивности и глубины провалов напряжения. Допустимые значения длительности провалов напряжения ГОСТ не указывает.
Рис. 3. Импульсное напряжение
Импульсное напряжение определяется в относительных единицах по формуле Δ U имп = U имп/(√2 U н)
К импульсам напряжения чувствительны также такие электроприемники, как ЭВМ, силовая электроника и др. Импульсные напряжения появляются вследствие коммутаций в электрической сети. Меры по снижению импульсных напряжений должны предусматриваться при разработке конкретных проектов электроснабжения. Допустимые значения импульсных напряжений ГОСТ не указывает.
Изменения частоты обусловлены изменениями суммарной нагрузки и характеристиками регуляторов частоты вращения турбин. Большие отклонения частоты возникают в результате медленного регулярного изменения нагрузки при недостаточном резерве активной мощности.
Частота напряжения в отличие от других явлений, ухудшающих качество электроэнергии, является общесистемным параметром: все генераторы, присоединенные к одной системе, генерируют электроэнергию на напряжении одинаковой частоты — 50 Гц.
Отклонение частоты от номинальной приводит к увеличению потерь энергии в сети, а также к снижению производительности технологического оборудования.
Коэффициент амплитудной модуляции напряжения и коэффициент небаланса междуфазных и фазных напряжений
Коэффициент амплитудной модуляции напряжения характеризует колебания напряжения и равен отношению полуразности наибольшей и наименьшей амплитуд модулированного напряжения, взятых за определенный интервал времени, к номинальному или базовому значению напряжения, т. е.
Коэффициент небаланса междуфазных напряжений k неб.мф характеризует несимметрию междуфазных напряжений и равен отношению размаха небаланса междуфазных напряжений к номинальному значению напряжения:
Коэффициент небаланса фазных напряжений k неб.ф характеризует несимметрию фазных напряжений и равен отношению размаха небаланса фазных напряжений к номинальному значению фазного напряжения:
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Качество электрической энергии
В типовом договоре энергоснабжения детально прописаны обязательства поставщика. Одно из них касается показателей качества электроэнергии. Будет полезным узнать, что конкретно подразумевается под этим термином, о каких показателях идет речь, а также получить информацию о действующих нормативных документах. Эти сведения позволят грамотно составить претензию к поставщику, если качество электроэнергии не отвечает установленным требованиям стандарта ГОСТ.
Что такое качество электроэнергии?
Для каждого типа электрической сети установлены определенные характеристики (параметры качества). Соответствие между ними и действительными значениями определяет качество электрической энергии.
Изменения ПКЭ могут возникнуть вследствие потерь электроэнергии при передаче на расстояние, увеличением потребляемой нагрузки, электромагнитных явлений и т.д.
Для оценки качества электричества осуществляются замеры основных показателей КЭ. Подробно они расписаны в нормах ГОСТа 13109-97, а также в его новой редакции 13109 99, приведем выдержки с кратким описанием каждого показателя.
Основные показатели качества электроэнергии
Поскольку идеального соответствия номинальным параметрам добиться невозможно, в нормировании показателей предусмотрены отклонения. Они могут быть допустимыми и предельно допустимыми. Ниже перечислены основные показатели качества и указаны приемлемые нормы для каждого из них
Отклонение напряжения
Такие отклонения качества характерны при существенных изменениях нагрузки или больших потерях в процессе передачи электроэнергии. Допустимыми считаются показатели при Uуст не более 5,0%, предельно допустимые – 10,0%.
Колебания напряжения
Данный параметр характеризует временные отклонения амплитуды колебаний электротока. Осцилограмма процесса представлена на рисунке 1. Это составной параметр качества электроэнергии, поскольку для характеристики колебаний напряжения необходимо учитывать:
Для первых двух пунктов необходимо дать небольшие пояснения.
Размах изменения напряжения.
Доза колебаний напряжения.
Данный критерий служит для описания частоты, с которой происходят отклонения. Следует учитывать, что если временной период между колебаниями меньше 30,0 миллисекунд, то их необходимо рассматривать как одно отклонение.
Отклонение частоты
В системах общего назначения для этого параметра установлено значение 50,0 Гц. Нормы стандарта допускают увеличение или уменьшение частоты на 2,0% или 4,0% (допустимые и предельные показатели, соответственно). Превышение допустимых отклонений частоты приводит выходу из строя импульсных БП, сбоям в работе электрогенераторов.
Доза фликера
Данный параметр описывает влияние на человека, производимое мерцанием источников света по причине изменения амплитуды электротока. Измерения производятся при помощи специальных приборов, определяющих допустимое мерцание.
Коэффициент временного перенапряжения
Эта характеристика определяет насколько текущая амплитуда выше предельно допустимого порога. Такие отклонения характерны при КЗ или коммутационных процессах. Случайный характер отклонений не позволяет нормировать показатель, но собранная статистика используется при определении качества электроэнергии однофазной или трехфазной сети.
Осцилограмма перенапряжения и провала напряжения
Провал напряжения
Под этим параметром подразумевается значительное снижение амплитуды (более 10,0% от номинального), с последующим восстановлением. Причиной провалов напряжения может быть КЗ, резкое увеличение нагрузки.
Характеристики для данного показателя качества электроэнергии описываются следующими составляющими:
Последнее требует пояснения.
Длительность провала напряжения.
По этому критерию можно судить как о качестве, так и надежности электроснабжения. «Проседание» с минимальной продолжительностью может не вызвать сбоев в работе электрических и электронных устройств. При длительности в несколько секунд, велика вероятность отключения оборудования с электрическими или электронными схемами управления. Помимо этого возрастает реактивная составляющая электродвигателей, что приводит к снижению коэффициента мощности.
В связи со случайной природой явления, его нормирование не предусмотрено.
Импульсное напряжение
Проявляется в виде краткосрочного (до 10-ти миллисекунд) увеличения амплитуды электроэнергии. Вызвать такой резкий скачок могут коммутационные процессы или грозовые разряды. Поскольку такие состояния сети носят случайный характер, нормирование импульсов не предусмотрено.
Импульс высокого напряжения
Для описания высокочастотных импульсов используются следующие характеристики:
Несимметрия напряжений в трехфазной системе
К такому явному ухудшению качества электроэнергии может привести неправильно распределенная нагрузка между фазами одной цепи, КЗ на землю, обрыв нейтрали, подсоединение потребителя с несимметричной нагрузкой.
Характерный перекос фаз
В связи с этим установлено требование, согласно которому разница нагрузки между фазами одной цепи не должна быть более 30,0% в пределах одного электрощита и 15,0% в начальной точке питающей линии.
Для определения показателей несимметрии используются коэффициенты нулевой и обратной последовательностей. Первый рассчитывается по формуле: Кнп = 100% * Uнп / Uном, второй: Коп = 100% * Uоп / Uном, где Uнп – амплитуда нулевой последовательности, Uоп — обратной.
Согласно установленным нормам регулирования напряжения в сетях до 1-го кВ значение Uнп и Uоп должны быть не более 2% и 4% (допустимое и предельное значения).
Несинусоидальность формы кривой напряжения
Данный вид некачественной электроэнергии связан с наличием сторонних гармоник. Чем выше частотность паразитной составляющей, тем больше величина искажения. Это видно если сравнить гармонику тока высокого (см. рис. 5) и третьего порядка (рис. 6).
Причина такого отклонения – подключение к сети потребителя с нелинейной ВАХ. Характерный пример – преобразователь на тиристорах.
Рис. 6. Гармоника третьего порядка
Для описания данного отклонения от качественных показателей используется коэффициент синусоидальных искажений, который определяется формулой Kи = ⎷∑UN 2 / Uном * 100%, где U – амплитуда гармоник.
Допустимые и предельно допустимые нормы, характеризующие качественную или некачественную электроэнергию для различных сетей, приведены в таблице ниже.
Допустимые коэффициент искажения синусоидальности для различных электросетей
Как проверить и измерить качество электрической энергии?
Прежде, чем приступать к измерениям, определяющим качество электрсети, следует принять во внимание, что ПКЭ должны быть зафиксированы представителями поставщика электроэнергии. По результатам проверки составляется акт, на основании которого можно предъявлять претензию.
Для проверки всех характеристик электроэнергии на соответствие требованиям ГОСТ 53144-2013, ГОСТ Р 54149-2010 и другим нормативным документам, потребуется специальная измерительная техника. Но часть основных показателей можно измерить, используя обычный мультиметр или определить несоответствие по косвенным признакам.
Как самостоятельно выявить снижение качества электроэнергии?
Перечислим показатели, которые можно проверить, используя мультиметр в режиме измерения переменного напряжения:
Второй и третий пункт довольно условны, длительность искажения может быть недостаточной для реакции прибора, а перепады напряжения будет сложно отличить от перенапряжений и провалов.
К косвенным методам определения качества электроэнергии относится анализ состояния сети по работе лампы с нитью накала. Слишком яркое свечение укажет на повышенное напряжение, тусклое – будет свидетельствовать о «проседании», мигание засвидетельствует перепады.
Нехарактерная работа электрооборудования также свидетельствует о недостаточном качестве электроэнергии. Например, компрессор холодильника постоянно функционирует, нестабильная работа электроники, самопроизвольное отключение бытовой техники, все это указывает на недостаточное напряжение в бытовой сети. Превышение напряжения вызовет срабатывание реле защиты, если оно было установлено.
Качество электроэнергии. Показатели и характеристики. Факторы
Электрическая энергия характеризуется такими показателями качества, как напряжение в сети, частота тока и форма синусоиды переменного тока. Поставщики электроэнергии обязаны поддерживать все ее параметры в соответствии с требованиями стандарта. В зависимости от работающих потребителей нагрузки, величина основных характеристик изменяется, что способствует при больших отклонениях возникновению неисправностей электрических бытовых устройств, т.к. снижается качество электроэнергии.
Факторы влияния
Качество электроэнергии во многом зависит от большого количества факторов, которые способны изменить ее параметры сверх заданных границ. Например, напряжение может стать слишком высоким из-за аварийной ситуации на электростанции. Низкие значения могут возникнуть вечером, когда люди включают много разных бытовых устройств.
Согласно нормативным документам допускается некоторое колебание параметров электрической энергии. В некачественных сетях питания приходится использовать специальные устройства, которые доводят параметры электроэнергии до нормативных показателей, называющиеся стабилизаторами напряжения. Контролирующим органом над качеством сетей питания является Роспотребнадзор, в который можно подавать претензии при возникновении проблем.
Факторы, влияющие на качество электроэнергии:
Необходимость соблюдения основных характеристик
Количественный показатель и допустимые отклонения характеристик сети устанавливаются нормативными документами. Эти параметры были утверждены по закону ввиду вероятности пожаров из-за возгорания электрических устройств, а также нарушения работы чувствительных приборов, функционирующих на военных объектах, в научных лабораториях и в медицинских организациях.
Показатели качества электрической энергии периодически обновляются, так как появляются новые электронные потребители с более высокими требованиями к питанию. Электричество рассматривается как поставляемая продукция, которая должна соответствовать заданным показателям. При больших отклонениях этих параметров к поставщикам энергии может быть применена система административной ответственности. В случае пострадавших по их вине людей, дело может дойти и до уголовной ответственности.
Возможные последствия отклонений
Характеристики качества питания сети оказывают влияние на продолжительность эксплуатации электрических устройств, особенно в промышленности. В результате снижается эффективность работы линий, повышается потребление электричества. В электрических двигателях при ухудшении характеристик сети снижается момент вращения, приборы освещения начинают мерцать, что влияет на выращивание овощей в теплице, снижается продолжительность работы ламп. Также значительное влияние оказывается на различные биохимические процессы.
Как известно из физики, уменьшение напряжения при постоянной нагрузке на мотор приводит к значительному повышению силы тока, что способствует сбоям в работе систем защиты. В результате изоляция проводов может расплавиться, что приведет к негативным последствиям: выход из строя электронных систем, разрушение обмоток электродвигателей и т.д. При такой ситуации приборы учета будут фиксировать чрезмерное потребление энергии, что повышает финансовые расходы.
Показатели оценки качества:
Показатели качества электроэнергии
Товары из статьи:
Качество электроэнергии, поставляемое в наши дома, не всегда является удовлетворительным. Мы часто говорим: «напряжение просело», «напряжение прыгает», «скачки напряжения», «плохое напряжение». Давайте разберемся вместе с этими понятиями. Следует отметить сразу, что точные определения отклонений от норм качества электроэнергии очень сложные. В рамках одной статьи невозможно дать полное описание требований к параметрам электричества и способам проведения официальных измерений. Тексты соответствующих ГОСТов и стандартов занимают десятки страниц и содержат многочисленные сложные формулы проведения расчётов. В данной статье мы дадим лишь общее понимание основных требований к качеству электроэнергии и простые описания часто встречающихся отклонений
Основные показатели качества электроэнергии
Список основных показателей качества электрической энергии:
Отклонение напряжения
Одним из параметров качества электроэнергии является отклонение напряжения.
Отклонение напряжения определяется значением установившегося отклонения напряжения. Для значения отклонения напряжения установлены нижеследующие нормы:
нормально допустимые и предельно допустимые значения установившегося отклонения напряжения на выводах приемников электроэнергии равны соответственно +5 и +10% от номинального напряжения электрической сети.
Значение отклонения напряжения определяется при длительности процесса более одной минуты. Нормально допустимым отклонением напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231 В). Предельно допустимым отклонением напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).
Для определенных выше показателей качества электроэнергии действуют следующие нормативы: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10% номинального или согласованного значения напряжения в течение 100% времени интервала в одну неделю.
Колебание напряжения
Одним из параметров качества электроэнергии является колебание напряжения.
Колебания напряжения характеризуются следующими показателями:
Значения колебания напряжения имеют те же самые нормы, что и отклонение напряжения с единственным отличием: длительность процесса менее одной минуты. Нормально допустимым колебанием напряжения считается диапазон в 5%, то есть: +/-5% (от 209 В до 231 В). Предельно допустимым колебанием напряжения считается диапазон в 10%, то есть: +/-10% (от 198 В до 242 В).
Провал напряжения
Одним из параметров качества электроэнергии является провал напряжения. Провал напряжения определяется показателем времени провала напряжения.
Предельно допустимое значение длительности провала напряжения в электросетях напряжением до 20 000 В включительно равно 30 секунд. Длительность автоматически устраняемого провала напряжения в любой точке присоединения к электрическим сетям определяется выдержками времени релейной защиты и временем срабатывания автоматики.
Провал напряжения определяется, когда напряжение падает до значения 0,9U и характеризуется длительностью процесса. Предельно допустимая длительность — 30 секунд. Глубина провала иногда может доходить и до 100%.
Перенапряжение
Временное перенапряжение определяется показателем коэффициента временного перенапряжения.
Перенапряжение характеризуется амплитудным значением напряжения больше 342 В. Верхний предел значения напряжения ГОСТом не определяется. Длительность временного перенапряжения — менее 1 секунды
Качество электроэнергии. Виды отклонений параметров электрической энергии
Для определения качества электрической энергии можно использовать следующие графические изображения. На приведенных ниже рисунках отображены следующие отклонения параметров качества электроэнергии: отклонение напряжения, колебание напряжения, перенапряжение, провал напряжения, нарушение синусоидальности напряжения, импульсы напряжения.
Как улучшить качество электроэнергии
В случае существенных отклонений параметров качества электроэнергии следует прежде всего обратиться в обслуживающую организацию, к поставщику электрической энергии. Если административные действия по улучшению качества электроэнергии не дадут результатов, тогда необходимо использовать специальные средства защиты. Для улучшения параметров качества электроэнергии мы рекомендуем использовать: средства защиты от скачков напряжения, стабилизаторы напряжения, источники бесперебойного питания.