что в двигателе внутреннего сгорания называют нагревателем
Физика. 10 класс
Конспект урока
Урок 25. Тепловые двигатели. КПД тепловых двигателей
Перечень вопросов, рассматриваемых на уроке:
1) Понятие теплового двигателя;
2)Устройство и принцип действия теплового двигателя;
3)КПД теплового двигателя;
Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.
КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.
Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.
Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.
Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.
Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).
Основная и дополнительная литература по теме урока:
1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.
Открытые электронные ресурсы по теме урока
Теоретический материал для самостоятельного изучения
Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.
Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.
Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.
Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.
Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.
Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.
В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.
Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.
Для определения эффективности работы теплового двигателя вводят понятие КПД.
Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Q1 – количество теплоты полученное от нагревания
Q2 – количество теплоты, отданное холодильнику
– работа, совершаемая двигателем за цикл.
Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.
Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле
Передача неиспользуемой части энергии холодильнику.
В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).
Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов
Не существует теплового двигателя, у которого КПД = 100% или 1.
Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.
Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.
Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.
Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.
Сравним эксплуатационные характеристики тепловых двигателей.
Паровой двигатель – 8%.
Паровая турбина – 40%.
Газовая турбина – 25-30%.
Двигатель внутреннего сгорания – 18-24%.
Дизельный двигатель – 40– 44%.
Реактивный двигатель – 25%.
Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.
Примеры и разбор решения заданий
1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?
Запишем формулу для расчёта КПД теплового двигателя:
Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:
Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:
Учитывая всё это, мы можем записать:
Время работы двигателя можно найти по формуле:
Из формулы КПД выразим среднюю мощность:
.
Подставим числовые значения величин:
После вычислений получаем, что N=60375 Вт.
2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?
Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.
=
– это количество теплоты, отданное холодильнику
Что в двигателе внутреннего сгорания называют нагревателем
Тепловые машины в термодинамике — это периодически действующие тепловые двигатели и холодильные машины (термокомпрессоры). Разновидностью холодильных машин являются тепловые насосы.
Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми машинами (тепловыми двигателями). Для функционирования тепловой машины необходимы следующие составляющие: 1) источник тепла с более высоким температурным уровнем t1, 2) источник тепла с более низким температурным уровнем t2, 3) рабочее тело. Иначе сказать: любые тепловые машины (тепловые двигатели) состоят из нагревателя, холодильника и рабочего тела.
В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты (Q1), и его внутренняя энергия увеличивается, за счёт этой внутренней энергии совершается механическая работа (А), затем рабочее тело отдаёт некоторое количество теплоты холодильнику (Q2) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.
Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы (А) к количеству теплоты, полученному им от нагревателя (Q1):
Двигатель внутреннего сгорания (ДВС)
Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный. В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая смесь готовится в самом двигателе.
ДВС состоит из цилиндра, в котором перемещается поршень; в цилиндре имеются два клапана, через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма соединяется с коленчатым валом, который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой.
Цикл работы ДВС включает четыре такта: впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт. В конце впуска горючей смеси закрывается клапан.
Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются. При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300— 350 °С, а воздух в дизельном двигателе — до 500—600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.
При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу. Это приводит к тому, что газ охлаждается.
Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа. В конце этого такта клапан закрывается.
Паровая турбина
Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.
Удельная теплота сгорания топлива
Удельная теплота сгорания топлива — физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.
Удельная теплота сгорания обозначается буквой q, её единицей является 1 Дж/кг.
Значение удельной теплоты определяют экспериментально. Наибольшую удельную теплоту сгорания имеет водород, наименьшую — порох.
Удельная теплота сгорания нефти — 4,4*10 7 Дж/кг. Это означает, что при полном сгорании 1 кг нефти выделяется количество теплоты 4,4*10 7 Дж. В общем случае, если масса топлива равна m, то количество теплоты Q, выделяющееся при его полном сгорании, равно произведению удельной теплоты сгорания топлива q на его массу:
Q = qm.
Конспект урока по физике в 8 классе «Тепловые машины. ДВС. Удельная теплота сгорания».
Принцип работы теплового двигателя
Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.
Согласно механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего тела (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.
Таким образом, основными элементами любого теплового двигателя являются:
1) рабочее тело (газ или пар), совершающее работу;
2) нагреватель, сообщающий энергию рабочему телу;
3) холодильник, поглощающий часть энергии от рабочего тела.
Тепловые двигатели: принцип действия, устройство, схема
Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.
Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.
Особенности теплового двигателя
Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.
Алгоритм действия
Тепловыми машинами называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.
Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.
Изменения температур
У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.
Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.
Некоторые факты
Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.
КПД тепловых машин
Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.
Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.
Изобретение тепловой машины
Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.
Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.
Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится.
Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.
Двигатель внутреннего сгорания
Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.
На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.
Принципы действия тепловых машин
КПД тепловых машин
Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.
Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.
Как работают тепловые двигатели
Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.
Инструкция
Видео по теме
Как устроены и как работают тепловые двигатели
Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?
Понятие и виды тепловых двигателей
Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.
Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.
Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).
Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.
Структурная схема работы теплового двигателя
Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.
В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.
Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.