что делает сервер приложений в трехзвенной многозвенной архитектуре
Введение в архитектуру клиент-серверных хранилищ
Как правило компьютеры и программы, входящие в состав информационной системы, не являются равноправными. Некоторые из них владеют ресурсами (файловая система, процессор, принтер, база данных и т.д.), другие имеют возможность обращаться к этим ресурсам. Компьютер (или программу), управляющий ресурсом, называют сервером этого ресурса (файл-сервер, сервер базы данных, вычислительный сервер. ). Клиент и сервер какого-либо ресурса могут находится как на одном компьютере, так и на различных компьютерах, связанных сетью.
Компоненты информационной системы по выполняемым функциям можно разделить на три слоя: слой представления, слой бизнес-логики и слой доступа к данным.
Три основных компонента сетевого приложения
С точки зрения программно-аппаратной реализации можно выделить ряд типовых архитектур ИС.
Архитектуры приложений для работы с базами данных
Двухзвенная архитектура
В любой сети (даже одноранговой), построенной на современных сетевых технологиях, присутствуют элементы клиент-серверного взаимодействия, чаще всего на основе двухзвенной архитектуры.
Клиент-серверная архитектура
Двухзвенная архитектура используется в клиент-серверных системах, где сервер отвечает на клиентские запросы напрямую и в полном объеме, при этом используя только собственные ресурсы. Т.е. сервер не вызывает сторонние сетевые приложения и не обращается к сторонним ресурсам для выполнения какой-либо части запроса.
Типичный пример двухуровненовой модели
Клиентская программа работает с данными через запросы к серверному ПО. Базовые функции приложения разделены между клиентом и сервером.
Трехзвенная архитектура
Еще одна тенденция в клиент-серверных технологиях связана со все большим использованием распределенных вычислений. Они реализуются на основе модели сервера приложений, где сетевое приложение разделено на две и более частей, каждая из которых может выполняться на отдельном компьютере. Выделенные части приложения взаимодействуют друг с другом, обмениваясь сообщениями в заранее согласованном формате. В этом случае двухзвенная клиент-серверная архитектура становится трехзвенной.
Трехзвенная клиент-серверная архитектура
Основным ее отличием от предыдущей архитектуры является физическое разделение программ, отвечающих за хранение данных (СУБД) от программ эти данные обрабатывающих. Такое разделение программных компонент позволяет оптимизировать нагрузки как на сетевое, так и на вычислительное оборудование комплекса.
Компоненты трехзвенной архитектуры, с точки зрения программного обеспечения реализуют определенные сервера БД, web-сервера и браузеры. Место любого из этих компонентов может занять программное обеспечение любого производителя.
Сервер приложений располагается на выделенном сервере приложений, выполняющем функции промежуточного ПО.
По сравнению с двухзвенной клиент-серверной архитектурой или файл-серверной архитектурой трёхуровневая архитектура обеспечивает, как правило, бо́льшую масштабируемость (за счёт горизонтальной масштабируемости сервера приложений и мультиплексирования соединений), бо́льшую конфигурируемость (за счёт изолированности уровней друг от друга). Реализация приложений, доступных из веб-браузера или из тонкого клиента, как правило, подразумевает развёртывание программного комплекса в трёхуровневой архитектуре. При этом обычно разработка трёхзвенных программных комплексов сложнее, чем для двухзвенных, также наличие дополнительного связующего программного обеспечения может налагать дополнительные издержки в администрировании таких комплексов.
Процедура «запрос — ответ»
В наиболее общем виде процесс «запрос — ответ» состоит из просьбы браузера к веб-серверу отправить ему веб-страницу и выполнения браузером данной просьбы. После этого браузер занимается отображением страницы.
При этом соблюдается такая последовательность действий.
При передаче типовой веб-страницы этот процесс осуществляется для каждого имеющегося на ней объекта: элемента графики, встроенного видео- или Flash-ролика и даже шаблона CSS.
Обратите внимание на то, что на шаге 2 браузер ищет IP-адрес, принадлежащий доменному имени server.com. У каждой машины, подключенной к Интернету, включая и ваш компьютер, есть свой IP-адрес. Но, как правило, доступ к веб-серверам осуществляется по именам, таким как google.com. Вам, должно быть, известно, что браузер обращается к вспомогательной интернет-службе, так называемой службе доменных имен (Domain Name Service (DNS)), для того чтобы найти связанный с сервером IP-адрес, а затем воспользоваться им для связи с компьютером.
При передаче динамических веб-страниц процедура состоит из большего количества действий, поскольку к ней могут привлекаться как PHP, так и MySQL.
В каждом из примеров возвращенные браузеру HTML-страницы могут содержать также код JavaScript, интерпретируемый локально на машине клиента. Этот код может инициировать еще один запрос, точно так же запрос может быть инициирован встроенными объектами, например изображениями.
Трехуровневая архитектура
Что такое трехуровневая архитектура?
Трехуровневая архитектура — это широко применяемая архитектура программного обеспечения в которой приложения разделены на три логических и физических уровня: уровень представления (пользовательский интерфейс), уровень приложения, на котором осуществляется обработка данных, и уровень данных, предназначенный для хранения и управления данными, относящимися к приложению.
Основное преимущество трехуровневой архитектуры заключается в том, что поскольку каждый уровень имеет собственную инфраструктуру, разработкой каждого уровня может заниматься отдельная команда разработчиков. Кроме того, каждый уровень можно обновлять и масштабировать по мере необходимости, не затрагивая другие уровни.
На протяжении десятилетий трехуровневая архитектура оставалась самой распространенной архитектурой для клиент-серверных приложений. Сегодня большинство трехуровневых архитектур подлежат модернизации с использованием облачных технологий, таких как контейнеры и микросервисы, а также требуют миграции в облако.
Подробное описание трех уровней
Уровень представления
На уровне представления обеспечивается взаимодействие с пользователем приложения — это пользовательский интерфейс и уровень обмена данными. Его основное предназначение состоит в отображении информации и получении информации от пользователя. Этот уровень может работать в веб-браузере или как графический пользовательский интерфейс компьютерного или мобильного приложения. Уровни представления веб-приложений обычно разрабатываются с помощью HTML, CSS и JavaScript. Компьютерные и мобильные приложения могут быть написаны на любом языке в зависимости от платформы.
Уровень приложений
Уровень приложения, также известный как логический или промежуточный уровень, является центральным звеном приложения. На этом уровне обрабатывается информация, собранная на уровне представления — иногда с учетом другой информации из уровня данных — с помощью бизнес-логики, которая представляет собой набор бизнес-правил. Кроме того, уровень приложения может добавлять, изменять и удалять данные, расположенные на уровне данных.
Как правило, уровень приложения разрабатывается с помощью Python, Java, Perl, PHP или Ruby и взаимодействует с уровнем данных посредством вызовов API.
Уровень данных
Уровень данных, который также называется уровнем базы данных, уровнем доступа к данным или базовым уровнем, предназначен для хранения и управления информацией, обработанной приложением. Его роль может выполнять реляционная система управления базами данных, такая как PostgreSQL, MySQL, MariaDB, Oracle, DB2, Informix или Microsoft SQL Server, либо сервер базы данных NoSQL, такой как Cassandra, CouchDB или MongoDB.
В трехуровневом приложении обмен данными осуществляется только через уровень приложения. Уровень представления и уровень данных не могут взаимодействовать друг с другом напрямую.
Слои и уровни
В контексте трехуровневой архитектуры термины уровень (tier) и слой (layer) часто используются как взаимозаменяемые, однако это не совсем справедливо.
Между ними следует делать различие. «Слой» разделяет части программы по функциональному признаку, а «уровни» не только имеют разный функционал, но и работают в независимой от других уровней инфраструктуре. Например, приложение Контакты на вашем телефоне представляет собой трехслойное приложение, но вместе с тем оно является одноуровневым, поскольку все три слоя работают на телефоне.
Эта разница имеет важное значение, поскольку слои не позволяют получить те преимущества, которые дает разделение по уровням.
Преимущества трехуровневой архитектуры
Итак, главным преимуществом трехуровневой архитектуры является логическое и физическое разделение функциональных возможностей. Каждый уровень можно запустить в отдельной операционной системе и серверной платформе (веб-сервер, сервер приложений, сервер базы данных), наилучшим образом соответствующей его функциональным требованиям. Поскольку каждый уровень выполняется по крайней мере на одном выделенном аппаратном или виртуальном сервере, уровни можно настраивать и оптимизировать независимо друг от друга.
Другие преимущества (по сравнению с одноуровневой и двухуровневой архитектурой):
Трехуровневое приложение в веб-разработке
В случае веб-разработки уровни называются по-другому, но выполняют аналогичные функции:
Другие многоуровневые архитектуры
Несмотря на доминирующее положение трехуровневой архитектуры, в своей работе вы можете встретиться с другими вариантами многоуровневых архитектур приложений.
Двухуровневая архитектура
Двухуровневая архитектура — это изначальный вариант клиент-серверной архитектуры, состоящей из слоя представления и слоя данных; бизнес-логика может находиться в слое представления и/или в слое данных. В случае двухуровневой архитектуры слой представления, а следовательно и конечный пользователь, обладают прямым доступом к слою данных и возможности бизнес-логики часто ограничивается. В качестве примера двухуровневого приложения можно привести простое приложение для управления контактами, в котором пользователи вводят и извлекают контактную информацию.
N-уровневая архитектура
В общем случае N-уровневая архитектура, также называемая многоуровневой архитектурой, представляет собой любую архитектуру приложений, имеющую больше одного уровня. Однако приложения более чем с тремя уровнями встречаются крайне редко, поскольку дополнительные уровни не дают существенных преимуществ и могут сделать приложение более медленным, сложным в управлении и дорогим в обслуживании. Таким образом, n-уровневая архитектура и многоуровневая архитектура обычно являются синонимами трехуровневой архитектуры.
Трехуровневая архитектура и IBM Cloud
IBM Cloud предлагает продукты и услуги, помогающие модернизировать устаревшие трехуровневые приложения в процессе перехода в облако.
Сделайте первый шаг:
Архитектура клиент-сервер
Веб-приложение – это клиент-серверное приложение, в котором клиентом выступает браузер, а сервером – веб-сервер (в широком смысле).
Основная часть приложения, как правило, находится на стороне веб-сервера, который обрабатывает полученные запросы в соответствии с бизнес-логикой продукта и формирует ответ, отправляемый пользователю. На этом этапе в работу включается браузер, именно он преобразовывает полученный ответ от сервера в графический интерфейс, понятный пользователю.
Архитектура «клиент-сервер» определяет общие принципы организации взаимодействия в сети, где имеются серверы, узлы-поставщики некоторых специфичных функций (сервисов) и клиенты (потребители этих функций).
Практические реализации такой архитектуры называются клиент-серверными технологиями.
Двухзвенная архитектура — распределение трех базовых компонентов между двумя узлами (клиентом и сервером). Двухзвенная архитектура используется в клиент-серверных системах, где сервер отвечает на клиентские запросы напрямую и в полном объеме.
Расположение компонентов на стороне клиента или сервера определяет следующие основные модели их взаимодействия в рамках двухзвенной архитектуры:
Клиент – это браузер, но встречаются и исключения (в тех случаях, когда один веб-сервер (ВС1) выполняет запрос к другому (ВС2), роль клиента играет веб-сервер ВС1). В классической ситуации (когда роль клиента выполняет браузер) для того, чтобы пользователь увидел графический интерфейс приложения в окне браузера, последний должен обработать полученный ответ веб-сервера, в котором будет содержаться информация, реализованная с применением HTML, CSS, JS (самые используемые технологии). Именно эти технологии «дают понять» браузеру, как именно необходимо «отрисовать» все, что он получил в ответе.
Веб-сервер – это сервер, принимающий HTTP-запросы от клиентов и выдающий им HTTP-ответы. Веб-сервером называют как программное обеспечение, выполняющее функции веб-сервера, так и непосредственно компьютер, на котором это программное обеспечение работает. Наиболее распространенными видами ПО веб-серверов являются Apache, IIS и NGINX. На веб-сервере функционирует тестируемое приложение, которое может быть реализовано с применением самых разнообразных языков программирования: PHP, Python, Ruby, Java, Perl и пр.
База данных фактически не является частью веб-сервера, но большинство приложений просто не могут выполнять все возложенные на них функции без нее, так как именно в базе данных хранится вся динамическая информация приложения (учетные, пользовательские данные и пр).
База данных — это информационная модель, позволяющая упорядоченно хранить данные об объекте или группе объектов, обладающих набором свойств, которые можно категоризировать. Базы данных функционируют под управлением так называемых систем управления базами данных (далее – СУБД). Самыми популярными СУБД являются MySQL, MS SQL Server, PostgreSQL, Oracle (все – клиент-серверные).
Трехзвенная архитектура — сетевое приложение разделено на две и более частей, каждая из которых может выполняться на отдельном компьютере. Выделенные части приложения взаимодействуют друг с другом, обмениваясь сообщениями в заранее согласованном формате.
Третьим звеном в трехзвенной архитектуре становится сервер приложений, т.е. компоненты распределяются следующим образом:
Трехзвенная архитектура может быть расширена до многозвенной (N-tier, Multi-tier) путем выделения дополнительных серверов, каждый из которых будет представлять собственные сервисы и пользоваться услугами прочих серверов разного уровня.
Двухзвенная архитектура проще, так как все запросы обслуживаются одним сервером, но именно из-за этого она менее надежна и предъявляет повышенные требования к производительности сервера.
Трехзвенная архитектура сложнее, но, благодаря тому, что функции распределены между серверами второго и третьего уровня, эта архитектура предоставляет:
Архитектурные особенности проектирования и разработки Веб-приложений
5.1.5. Многоуровневый «клиент-сервер»
Многоуровневая архитектура клиент-сервер ( Multitier architecture) – разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов [15]. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.
Схематически такую архитектуру можно представить, как показано на рис. 5.4.
Плюсами данной архитектуры являются [12, 14, 16, 17]:
Некоторые авторы (например, Мартин Фаулер [18]) представляют многозвенную архитектуру (трехзвенную) в виде пяти уровней (рис. 5.5):
К представлению относится вся информация, непосредственно отображаемая пользователю: сгенерированные html-страницы, таблицы стилей, изображения.
Уровень представления охватывает все, что имеет отношение к общению пользователя с системой. К главным функциям слоя представления относятся отображение информации и интерпретация вводимых пользователем команд с преобразованием их в соответствующие операции в контексте логики и данных.
Уровень логики содержит основные функции системы, предназначенные для достижения поставленной перед ним цели. К таким функциям относятся вычисления на основе вводимых и хранимых данных, проверка всех элементов данных и обработка команд, поступающих от слоя представления, а также передача информации уровню данных.
Уровень доступа к данным – это подмножество функций, обеспечивающих взаимодействие со сторонними системами, которые выполняют задания в интересах приложения.
Данные системы обычно хранятся в базе данных.
5.1.6. Архитектура распределенных систем
Такой тип систем является более сложным с точки зрения организации системы. Суть распределенной системы заключается в том, чтобы хранить локальные копии важных данных [19].
Схематически такую архитектуру можно представить, как показано на рис. 5.6.
Более 95 % данных, используемых в управлении предприятием, могут быть размещены на одном персональном компьютере, обеспечив возможность его независимой работы [16]. Поток исправлений и дополнений, создаваемый на этом компьютере, ничтожен по сравнению с объемом данных, используемых при этом. Поэтому если хранить непрерывно используемые данные на самих компьютерах, и организовать обмен между ними исправлениями и дополнениями к хранящимся данным, то суммарный передаваемый трафик резко снизится. Это позволяет понизить требования к каналам связи между компьютерами и чаще использовать асинхронную связь, и благодаря этому создавать надежно функционирующие распределенные информационные системы, использующие для связи отдельных элементов неустойчивую связь типа Интернета, мобильную связь, коммерческие спутниковые каналы. А минимизация трафика между элементами сделает вполне доступной стоимость эксплуатации такой связи. Конечно, реализация такой системы не элементарна, и требует решения ряда проблем, одна из которых своевременная синхронизация данных.
Каждый АРМ независим, содержит только ту информацию, с которой должен работать, а актуальность данных во всей системе обеспечивается благодаря непрерывному обмену сообщениями с другими АРМами. Обмен сообщениями между АРМами может быть реализован различными способами, от отправки данных по электронной почте до передачи данных по сетям.
Еще одним из преимуществ такой схемы эксплуатации и архитектуры системы, является обеспечение возможности персональной ответственности за сохранность данных. Так как данные, доступные на конкретном рабочем месте, находятся только на этом компьютере, при использовании средств шифрования и личных аппаратных ключей исключается доступ к данным посторонних, в том числе и IT администраторов.
Такая архитектура системы также позволяет организовать распределенные вычисления между клиентскими машинами. Например, расчет какой-либо задачи, требующей больших вычислений, можно распределить между соседними АРМами благодаря тому, что они, как правило, обладают одной информацией в своих БД и, таким образом, добиться максимальной производительности системы.
Распределенные системы с репликацией
Распределенные системы с элементами удаленного исполнения
Существуют определенные особенности, которые невозможно качественно реализовать на обычной распределенной системе репликативного типа. К этим особенностям можно отнести [19]:
У каждого из описанных типов используется общий принцип: программа клиент или обращается к выделенному (удаленному) серверу непосредственно или обращается к локальной базе, которая инкапсулирует в себе обращение к удаленному серверу (рис. 5.8).
Архитектурные особенности проектирования и разработки Веб-приложений
5.1.5. Многоуровневый «клиент-сервер»
Многоуровневая архитектура клиент-сервер ( Multitier architecture) – разновидность архитектуры клиент-сервер, в которой функция обработки данных вынесена на один или несколько отдельных серверов [15]. Это позволяет разделить функции хранения, обработки и представления данных для более эффективного использования возможностей серверов и клиентов.
Схематически такую архитектуру можно представить, как показано на рис. 5.4.
Плюсами данной архитектуры являются [12, 14, 16, 17]:
Некоторые авторы (например, Мартин Фаулер [18]) представляют многозвенную архитектуру (трехзвенную) в виде пяти уровней (рис. 5.5):
К представлению относится вся информация, непосредственно отображаемая пользователю: сгенерированные html-страницы, таблицы стилей, изображения.
Уровень представления охватывает все, что имеет отношение к общению пользователя с системой. К главным функциям слоя представления относятся отображение информации и интерпретация вводимых пользователем команд с преобразованием их в соответствующие операции в контексте логики и данных.
Уровень логики содержит основные функции системы, предназначенные для достижения поставленной перед ним цели. К таким функциям относятся вычисления на основе вводимых и хранимых данных, проверка всех элементов данных и обработка команд, поступающих от слоя представления, а также передача информации уровню данных.
Уровень доступа к данным – это подмножество функций, обеспечивающих взаимодействие со сторонними системами, которые выполняют задания в интересах приложения.
Данные системы обычно хранятся в базе данных.
5.1.6. Архитектура распределенных систем
Такой тип систем является более сложным с точки зрения организации системы. Суть распределенной системы заключается в том, чтобы хранить локальные копии важных данных [19].
Схематически такую архитектуру можно представить, как показано на рис. 5.6.
Более 95 % данных, используемых в управлении предприятием, могут быть размещены на одном персональном компьютере, обеспечив возможность его независимой работы [16]. Поток исправлений и дополнений, создаваемый на этом компьютере, ничтожен по сравнению с объемом данных, используемых при этом. Поэтому если хранить непрерывно используемые данные на самих компьютерах, и организовать обмен между ними исправлениями и дополнениями к хранящимся данным, то суммарный передаваемый трафик резко снизится. Это позволяет понизить требования к каналам связи между компьютерами и чаще использовать асинхронную связь, и благодаря этому создавать надежно функционирующие распределенные информационные системы, использующие для связи отдельных элементов неустойчивую связь типа Интернета, мобильную связь, коммерческие спутниковые каналы. А минимизация трафика между элементами сделает вполне доступной стоимость эксплуатации такой связи. Конечно, реализация такой системы не элементарна, и требует решения ряда проблем, одна из которых своевременная синхронизация данных.
Каждый АРМ независим, содержит только ту информацию, с которой должен работать, а актуальность данных во всей системе обеспечивается благодаря непрерывному обмену сообщениями с другими АРМами. Обмен сообщениями между АРМами может быть реализован различными способами, от отправки данных по электронной почте до передачи данных по сетям.
Еще одним из преимуществ такой схемы эксплуатации и архитектуры системы, является обеспечение возможности персональной ответственности за сохранность данных. Так как данные, доступные на конкретном рабочем месте, находятся только на этом компьютере, при использовании средств шифрования и личных аппаратных ключей исключается доступ к данным посторонних, в том числе и IT администраторов.
Такая архитектура системы также позволяет организовать распределенные вычисления между клиентскими машинами. Например, расчет какой-либо задачи, требующей больших вычислений, можно распределить между соседними АРМами благодаря тому, что они, как правило, обладают одной информацией в своих БД и, таким образом, добиться максимальной производительности системы.
Распределенные системы с репликацией
Распределенные системы с элементами удаленного исполнения
Существуют определенные особенности, которые невозможно качественно реализовать на обычной распределенной системе репликативного типа. К этим особенностям можно отнести [19]:
У каждого из описанных типов используется общий принцип: программа клиент или обращается к выделенному (удаленному) серверу непосредственно или обращается к локальной базе, которая инкапсулирует в себе обращение к удаленному серверу (рис. 5.8).