что быстрее пуля или звук
А пули свистят
Отвечаем на пять вопросов о звуках оружия
Слышит ли человек выстрел, если стреляют по нему?
Скорость звука в воздухе в нормальных условиях составляет 330 метров в секунду, но этот параметр изменяется вместе с изменением атмосферного давления, температуры воздуха и высоты.
Как работает глушитель?
Прежде, чем ответить на этот вопрос, нужно разобраться из чего формируется звук выстрела. Если говорить упрощенно, то при стрельбе боек накалывает капсюль в донце гильзы (маленький обычно латунный стакан, заполненный чувствительным к удару взрывчатым веществом). После этого заряд в капсюле воспламеняется и поджигает пороховой заряд в гильзе, в результате горения которого образуются пороховые газы. Они выталкивают пулю из дульца гильзы и проталкивают ее по каналу ствола. Накопленной во время движения по стволу кинетической энергии пули хватает, чтобы пролететь некоторое расстояние.
Так вот, звук выстрела складывается из нескольких звуков, но наибольший вклад вносят два из них. Первый — свист или шипение пороховых газов, прорывающихся в зазор между пулей и стенкой канала ствола при выстреле. Второй — хлопок, создаваемый расширяющимися пороховыми газами в момент, когда пуля выходит из ствола. Этот хлопок иначе называется дульной волной. Если стрельба ведется сверхзвуковыми патронами, то к звуку выстрела примешивается еще и ударная волна от пули, летящей быстрее скорости звука. Эта ударная волна называется баллистической.
Все существующие сегодня глушители, которые правильнее называть приборами бесшумной беспламенной стрельбы, рассчитаны на снижение громкости выстрела при ведении огня дозвуковыми патронами. При стрельбе сверхзвуковыми патронами глушитель, конечно, уменьшит громкость самого выстрела, но хлопок от летящей быстрее скорости звука пули все равно будет хорошо слышен на дистанции пары-тройки сотен метров.
При выстреле пороховые газы толкают пулю по каналу ствола, после чего она попадает в центральный канал глушителя, а затем покидает его. Пороховые же газы, следуя за пулей, в глушителе расширяются и заполняют камеры. Там они остывают, немного уменьшаются в объеме и теряют энергию. Затем вслед за пулей остывшие пороховые газы с существенно меньшей скоростью покидают глушитель. Благодаря глушителю остывшие газы, выходящие из него, расширяются несколько медленнее, благодаря чему и достигается значительное уменьшение громкости выстрела.
После первого выстрела все камеры в глушителе уже оказываются полностью заполненными пороховыми газами, а содержание кислорода в них крайне мало и недостаточно для догорания не сгоревшего пороха. По этой причине после первого выстрела с использованием глушителя хлопков уже не происходит.
Для сравнения. Громкость выстрела из пистолета Glock 17 Gen. 4, использующего патроны калибра 9×19 Parabellum, составляет 160 — 165 децибел. Длина ствола пистолета составляет 114 миллиметров. У пистолета CZ 75 такого же калибра при длине ствола 120 миллиметров громкость выстрела составляет около 160 децибел.
Почему выстрел из рельсотрона сопровождается дымом, грохотом, а иногда и пламенем?
На самом деле все немного проще. Энергия выстрела прототипа рельсотрона, разработанного General Atomics, составляла 32 мегаджоуля. В момент выстрела заряд, накопленный ионисторными сборками, практически мгновенно разряжался на рельсы орудия, в результате чего по ним через металлическую болванку-снаряд проходил электрический ток колоссальных напряжения и силы. Параметры тока разработчики не раскрывают. В результате разряда часть металла на рельсах сгорала. Кроме того, сама болванка частично покрывалась пластиком и смазкой, которые также сгорали при выстреле. Этим и объясняются дым и пламя.
Почему, когда штурмовой самолет A-10 Thunderbolt II ведет огонь из пушки, мы слышим два звука выстрелов?
Американцы очень гордятся своими штурмовыми самолетами A-10 Thunderbolt II. Эти летательные аппараты вошли в историю как самолеты, построенные вокруг пушки — семиствольной GAU-8/A Avenger с вращающимся блоком стволов. Это орудие отличается высокой скорострельностью, которая в среднем составляет 3,9 тысячи выстрелов в минуту. При стрельбе она издает особый звук, который американские военные прозвали brrrt. На многих видеозаписях отчетливо слышно, что при стрельбе A-10 издает двазвука brrrt — один громкий, а другой потише.
Это явление имеет два разных объяснения, которые зависят от того, где именно находится наблюдатель. Если наблюдатель находится рядом с целью, по которой A-10 ведет огонь, то он слышит как бы два звука выстрелов. Начальная скорость снаряда при стрельбе из GAU-8/A составляет 1010 метров в секунду, это почти втрое быстрее скорости звука. Снаряды прилетают к цели первыми, бьют по ней и эти удары сначала и слышит наблюдатель. Затем до него долетают уже непосредственно звуки выстрелов из Avenger.
Это отлично видно и слышно, например, на этой записи с совместного тактического учения ВВС и Армии США, проведенного в Неваде весной 2019 года:
Вот не менее яркий пример двух brrrt — попадания снарядов по земле и непосредственно звук выстрела. На этом видео A-10 оказывает американским военным огневую поддержку с воздуха, вероятно, в Сирии:
Второй случай двойного brrrt встречается, когда наблюдатель находится сбоку от траектории полета A-10 к цели. Тогда первый звук, который он слышит, — это звук выстрелов из авиационной пушки. А второй — эхо этого звука. Оно возникает, когда дульная волна достигает земли, отражается от нее, а затем доходит до наблюдателя. Такое явление встречается чаще всего в гористой местности. Такое явление хорошо видно и слышно на этом видео:
Основы баллистики
Как измеряли скорость света
Людей всегда интересовало, что быстрее всего на свете. Многие ученые пытались выяснить, распространяется ли свет мгновенно или с задержкой, но сделать это впервые удалось датчанину О. Ремеру. В 1676 г астроном наблюдал за движением спутника Юпитера и заметил, что он периодически опаздывает. То, что расстояние между Землей и и этим газовым гигантом меняется, было закономерно: в момент каждого нового наблюдения наша планета смещалась по орбите.
Любопытно было другое — это расстояние увеличивалось на величину, равную диаметру земной орбиты. Именно в момент наибольшей дистанции между двумя планетами спутник выходил из тени с максимальным опозданием. Сопоставив факты, Ремер понял, что световая волна не распространяется мгновенно. Он разделил диаметр Земли на время задержки спутника и вычислил скорость света.
Как измеряли скорость звука
Через 50 лет Исаак Ньютон рассчитал скорость звуковой волны. Оказалось, что его теоретический результат и результат эксперимента Мерсенна очень сильно отличаются. Лишь в 1808 г француз Пуассон пришел к выводу, что величина, полученная Ньютоном, верна только для постоянной температуры воздуха, чего в обычных условиях добиться невозможно.
В 1822 г опыты группы французских ученых подтвердили догадки. Вывод был таков: скорость звука зависит от температуры, чем она выше, тем быстрее распространяется звуковая волна.
А пули свистят
Слышит ли человек выстрел, если стреляют по нему?
Скорость звука в воздухе в нормальных условиях составляет 330 метров в секунду, но этот параметр изменяется вместе с изменением атмосферного давления, температуры воздуха и высоты.
Как работает глушитель?
Прежде, чем ответить на этот вопрос, нужно разобраться из чего формируется звук выстрела. Если говорить упрощенно, то при стрельбе боек накалывает капсюль в донце гильзы (маленький обычно латунный стакан, заполненный чувствительным к удару взрывчатым веществом). После этого заряд в капсюле воспламеняется и поджигает пороховой заряд в гильзе, в результате горения которого образуются пороховые газы. Они выталкивают пулю из дульца гильзы и проталкивают ее по каналу ствола. Накопленной во время движения по стволу кинетической энергии пули хватает, чтобы пролететь некоторое расстояние.
Так вот, звук выстрела складывается из нескольких звуков, но наибольший вклад вносят два из них. Первый — свист или шипение пороховых газов, прорывающихся в зазор между пулей и стенкой канала ствола при выстреле. Второй — хлопок, создаваемый расширяющимися пороховыми газами в момент, когда пуля выходит из ствола. Этот хлопок иначе называется дульной волной. Если стрельба ведется сверхзвуковыми патронами, то к звуку выстрела примешивается еще и ударная волна от пули, летящей быстрее скорости звука. Эта ударная волна называется баллистической.
Все существующие сегодня глушители, которые правильнее называть приборами бесшумной беспламенной стрельбы, рассчитаны на снижение громкости выстрела при ведении огня дозвуковыми патронами. При стрельбе сверхзвуковыми патронами глушитель, конечно, уменьшит громкость самого выстрела, но хлопок от летящей быстрее скорости звука пули все равно будет хорошо слышен на дистанции пары-тройки сотен метров.
При выстреле пороховые газы толкают пулю по каналу ствола, после чего она попадает в центральный канал глушителя, а затем покидает его. Пороховые же газы, следуя за пулей, в глушителе расширяются и заполняют камеры. Там они остывают, немного уменьшаются в объеме и теряют энергию. Затем вслед за пулей остывшие пороховые газы с существенно меньшей скоростью покидают глушитель. Благодаря глушителю остывшие газы, выходящие из него, расширяются несколько медленнее, благодаря чему и достигается значительное уменьшение громкости выстрела.
После первого выстрела все камеры в глушителе уже оказываются полностью заполненными пороховыми газами, а содержание кислорода в них крайне мало и недостаточно для догорания не сгоревшего пороха. По этой причине после первого выстрела с использованием глушителя хлопков уже не происходит.
Для сравнения. Громкость выстрела из пистолета Glock 17 Gen. 4, использующего патроны калибра 9×19 Parabellum, составляет 160 — 165 децибел. Длина ствола пистолета составляет 114 миллиметров. У пистолета CZ 75 такого же калибра при длине ствола 120 миллиметров громкость выстрела составляет около 160 децибел.
Почему выстрел из рельсотрона сопровождается дымом, грохотом, а иногда и пламенем?
На самом деле все немного проще. Энергия выстрела прототипа рельсотрона, разработанного General Atomics, составляла 32 мегаджоуля. В момент выстрела заряд, накопленный ионисторными сборками, практически мгновенно разряжался на рельсы орудия, в результате чего по ним через металлическую болванку-снаряд проходил электрический ток колоссальных напряжения и силы. Параметры тока разработчики не раскрывают. В результате разряда часть металла на рельсах сгорала. Кроме того, сама болванка частично покрывалась пластиком и смазкой, которые также сгорали при выстреле. Этим и объясняются дым и пламя.
Почему, когда штурмовой самолет A-10 Thunderbolt II ведет огонь из пушки, мы слышим два звука выстрелов?
Американцы очень гордятся своими штурмовыми самолетами A-10 Thunderbolt II. Эти летательные аппараты вошли в историю как самолеты, построенные вокруг пушки — семиствольной GAU-8/A Avenger с вращающимся блоком стволов. Это орудие отличается высокой скорострельностью, которая в среднем составляет 3,9 тысячи выстрелов в минуту. При стрельбе она издает особый звук, который американские военные прозвали brrrt. На многих видеозаписях отчетливо слышно, что при стрельбе A-10 издает двазвука brrrt — один громкий, а другой потише.
Это явление имеет два разных объяснения, которые зависят от того, где именно находится наблюдатель. Если наблюдатель находится рядом с целью, по которой A-10 ведет огонь, то он слышит как бы два звука выстрелов. Начальная скорость снаряда при стрельбе из GAU-8/A составляет 1010 метров в секунду, это почти втрое быстрее скорости звука. Снаряды прилетают к цели первыми, бьют по ней и эти удары сначала и слышит наблюдатель. Затем до него долетают уже непосредственно звуки выстрелов из Avenger.
Это отлично видно и слышно, например, на этой записи с совместного тактического учения ВВС и Армии США, проведенного в Неваде весной 2020 года:
Вот не менее яркий пример двух brrrt — попадания снарядов по земле и непосредственно звук выстрела. На этом видео A-10 оказывает американским военным огневую поддержку с воздуха, вероятно, в Сирии:
Второй случай двойного brrrt встречается, когда наблюдатель находится сбоку от траектории полета A-10 к цели. Тогда первый звук, который он слышит, — это звук выстрелов из авиационной пушки. А второй — эхо этого звука. Оно возникает, когда дульная волна достигает земли, отражается от нее, а затем доходит до наблюдателя. Такое явление встречается чаще всего в гористой местности. Такое явление хорошо видно и слышно на этом видео:
Звук или свет — что быстрее?
При нулевой температуре воздуха скорость звука составляет 331 м/с. При 20° С — 344 м/с. Звуковая волна распространяется не только в воздухе, но и в жидкостях, твердых телах. Известно, что чем больше вещество сопротивляется сжатию, тем лучше проводит звук. Так, скорость звука в воде — 1484 м/с. Металлы, например, алюминий, сталь, железо, проводят звук со скоростью 5000-6000 м/с, а сапфир — со скоростью 11400 м/с.
Полученная Ремером величина скорости света слегка корректировалась, и не раз, потому что со временем менялись методы измерений, расчетов. Свет проходит расстояние в 150 млн км за 8 минут. Его скорость немного меньше 300 тыс. км/с, но для удобства вычислений величину принято округлять.
Сегодня науке доподлинно известно: свет — это то, что быстрее всего на свете. Иными словами, эти частицы двигаются быстрее всех.
Проблемы сверхзвукового полета
Как бы ни разгонялся обычный самолет, он не сможет длительное время лететь на сверхзвуковой скорости. Дозвуковые самолеты отличаются более плавными и округленными формами. А при полете на сверхзвуковой скорости возникают иные аэродинамические условия.
Интересно: Почему в городе снег тает быстрее, чем за городом? Причины, фото и видео
Резко увеличивается сопротивление воздуха, корпус самолета нагревается из-за трения. В результате обычный самолет потеряет стабильное управление и может начать разрушаться прямо в воздухе.
Активно развиваться сверхзвуковая авиация начала в 50-60-х годах. Первым сверхзвуковым самолетом, который выпускался серийно, стал истребитель North American F-100 Super Sabre. Данная модель впервые совершила полет в 1953 году.
Создавались и пассажирские сверхзвуковые самолеты, которые выполняли регулярные рейсы. Но их было всего 2: советский Ту-144 и англо-французский Concorde.
Сверхзвуковой пассажирский самолет Ту-144
Преимущество таких самолетов – это преодоление больших расстояний за короткий промежуток времени. Также сверхзвуковой самолет перемещается на большей высоте по сравнению с обычными. Соответственно, воздушное пространство не загружено. Но от их использования вскоре отказались из-за нескольких недостатков:
Громкий хлопок – это резкий скачок давления перед самолетом, образующийся в момент, когда самолет начинает двигаться со сверхзвуковой скоростью (преодолевает звуковой барьер). Ударная волна, возникающая перед самолетом, распространяется конусообразно. Человек, наблюдающий за полетом самолета, слышит хлопок, когда эта волна достигает его, и только после этого можно услышать работу двигателя. Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке – поблизости с наблюдателем.
Скорость пули пистолета
Как измеряли скорость света
Людей всегда интересовало, что быстрее всего на свете. Многие ученые пытались выяснить, распространяется ли свет мгновенно или с задержкой, но сделать это впервые удалось датчанину О. Ремеру. В 1676 г астроном наблюдал за движением спутника Юпитера и заметил, что он периодически опаздывает. То, что расстояние между Землей и и этим газовым гигантом меняется, было закономерно: в момент каждого нового наблюдения наша планета смещалась по орбите.
Любопытно было другое — это расстояние увеличивалось на величину, равную диаметру земной орбиты. Именно в момент наибольшей дистанции между двумя планетами спутник выходил из тени с максимальным опозданием. Сопоставив факты, Ремер понял, что световая волна не распространяется мгновенно. Он разделил диаметр Земли на время задержки спутника и вычислил скорость света.
Как измеряли скорость звука
Через 50 лет Исаак Ньютон рассчитал скорость звуковой волны. Оказалось, что его теоретический результат и результат эксперимента Мерсенна очень сильно отличаются. Лишь в 1808 г француз Пуассон пришел к выводу, что величина, полученная Ньютоном, верна только для постоянной температуры воздуха, чего в обычных условиях добиться невозможно.
В 1822 г опыты группы французских ученых подтвердили догадки. Вывод был таков: скорость звука зависит от температуры, чем она выше, тем быстрее распространяется звуковая волна.
А пули свистят
Слышит ли человек выстрел, если стреляют по нему?
Скорость звука в воздухе в нормальных условиях составляет 330 метров в секунду, но этот параметр изменяется вместе с изменением атмосферного давления, температуры воздуха и высоты.
Как работает глушитель?
Прежде, чем ответить на этот вопрос, нужно разобраться из чего формируется звук выстрела. Если говорить упрощенно, то при стрельбе боек накалывает капсюль в донце гильзы (маленький обычно латунный стакан, заполненный чувствительным к удару взрывчатым веществом). После этого заряд в капсюле воспламеняется и поджигает пороховой заряд в гильзе, в результате горения которого образуются пороховые газы. Они выталкивают пулю из дульца гильзы и проталкивают ее по каналу ствола. Накопленной во время движения по стволу кинетической энергии пули хватает, чтобы пролететь некоторое расстояние.
Так вот, звук выстрела складывается из нескольких звуков, но наибольший вклад вносят два из них. Первый — свист или шипение пороховых газов, прорывающихся в зазор между пулей и стенкой канала ствола при выстреле. Второй — хлопок, создаваемый расширяющимися пороховыми газами в момент, когда пуля выходит из ствола. Этот хлопок иначе называется дульной волной. Если стрельба ведется сверхзвуковыми патронами, то к звуку выстрела примешивается еще и ударная волна от пули, летящей быстрее скорости звука. Эта ударная волна называется баллистической.
Все существующие сегодня глушители, которые правильнее называть приборами бесшумной беспламенной стрельбы, рассчитаны на снижение громкости выстрела при ведении огня дозвуковыми патронами. При стрельбе сверхзвуковыми патронами глушитель, конечно, уменьшит громкость самого выстрела, но хлопок от летящей быстрее скорости звука пули все равно будет хорошо слышен на дистанции пары-тройки сотен метров.
При выстреле пороховые газы толкают пулю по каналу ствола, после чего она попадает в центральный канал глушителя, а затем покидает его. Пороховые же газы, следуя за пулей, в глушителе расширяются и заполняют камеры. Там они остывают, немного уменьшаются в объеме и теряют энергию. Затем вслед за пулей остывшие пороховые газы с существенно меньшей скоростью покидают глушитель. Благодаря глушителю остывшие газы, выходящие из него, расширяются несколько медленнее, благодаря чему и достигается значительное уменьшение громкости выстрела.
После первого выстрела все камеры в глушителе уже оказываются полностью заполненными пороховыми газами, а содержание кислорода в них крайне мало и недостаточно для догорания не сгоревшего пороха. По этой причине после первого выстрела с использованием глушителя хлопков уже не происходит.
Для сравнения. Громкость выстрела из пистолета Glock 17 Gen. 4, использующего патроны калибра 9×19 Parabellum, составляет 160 — 165 децибел. Длина ствола пистолета составляет 114 миллиметров. У пистолета CZ 75 такого же калибра при длине ствола 120 миллиметров громкость выстрела составляет около 160 децибел.
Почему выстрел из рельсотрона сопровождается дымом, грохотом, а иногда и пламенем?
На самом деле все немного проще. Энергия выстрела прототипа рельсотрона, разработанного General Atomics, составляла 32 мегаджоуля. В момент выстрела заряд, накопленный ионисторными сборками, практически мгновенно разряжался на рельсы орудия, в результате чего по ним через металлическую болванку-снаряд проходил электрический ток колоссальных напряжения и силы. Параметры тока разработчики не раскрывают. В результате разряда часть металла на рельсах сгорала. Кроме того, сама болванка частично покрывалась пластиком и смазкой, которые также сгорали при выстреле. Этим и объясняются дым и пламя.
Почему, когда штурмовой самолет A-10 Thunderbolt II ведет огонь из пушки, мы слышим два звука выстрелов?
Американцы очень гордятся своими штурмовыми самолетами A-10 Thunderbolt II. Эти летательные аппараты вошли в историю как самолеты, построенные вокруг пушки — семиствольной GAU-8/A Avenger с вращающимся блоком стволов. Это орудие отличается высокой скорострельностью, которая в среднем составляет 3,9 тысячи выстрелов в минуту. При стрельбе она издает особый звук, который американские военные прозвали brrrt. На многих видеозаписях отчетливо слышно, что при стрельбе A-10 издает двазвука brrrt — один громкий, а другой потише.
Это явление имеет два разных объяснения, которые зависят от того, где именно находится наблюдатель. Если наблюдатель находится рядом с целью, по которой A-10 ведет огонь, то он слышит как бы два звука выстрелов. Начальная скорость снаряда при стрельбе из GAU-8/A составляет 1010 метров в секунду, это почти втрое быстрее скорости звука. Снаряды прилетают к цели первыми, бьют по ней и эти удары сначала и слышит наблюдатель. Затем до него долетают уже непосредственно звуки выстрелов из Avenger.
Это отлично видно и слышно, например, на этой записи с совместного тактического учения ВВС и Армии США, проведенного в Неваде весной 2020 года:
Вот не менее яркий пример двух brrrt — попадания снарядов по земле и непосредственно звук выстрела. На этом видео A-10 оказывает американским военным огневую поддержку с воздуха, вероятно, в Сирии:
Второй случай двойного brrrt встречается, когда наблюдатель находится сбоку от траектории полета A-10 к цели. Тогда первый звук, который он слышит, — это звук выстрелов из авиационной пушки. А второй — эхо этого звука. Оно возникает, когда дульная волна достигает земли, отражается от нее, а затем доходит до наблюдателя. Такое явление встречается чаще всего в гористой местности. Такое явление хорошо видно и слышно на этом видео:
Звук или свет — что быстрее?
При нулевой температуре воздуха скорость звука составляет 331 м/с. При 20° С — 344 м/с. Звуковая волна распространяется не только в воздухе, но и в жидкостях, твердых телах. Известно, что чем больше вещество сопротивляется сжатию, тем лучше проводит звук. Так, скорость звука в воде — 1484 м/с. Металлы, например, алюминий, сталь, железо, проводят звук со скоростью 5000-6000 м/с, а сапфир — со скоростью 11400 м/с.
Полученная Ремером величина скорости света слегка корректировалась, и не раз, потому что со временем менялись методы измерений, расчетов. Свет проходит расстояние в 150 млн км за 8 минут. Его скорость немного меньше 300 тыс. км/с, но для удобства вычислений величину принято округлять.
Сегодня науке доподлинно известно: свет — это то, что быстрее всего на свете. Иными словами, эти частицы двигаются быстрее всех.
Проблемы сверхзвукового полета
Как бы ни разгонялся обычный самолет, он не сможет длительное время лететь на сверхзвуковой скорости. Дозвуковые самолеты отличаются более плавными и округленными формами. А при полете на сверхзвуковой скорости возникают иные аэродинамические условия.
Почему обмелело Аральское море?
Резко увеличивается сопротивление воздуха, корпус самолета нагревается из-за трения. В результате обычный самолет потеряет стабильное управление и может начать разрушаться прямо в воздухе.
Активно развиваться сверхзвуковая авиация начала в 50-60-х годах. Первым сверхзвуковым самолетом, который выпускался серийно, стал истребитель North American F-100 Super Sabre. Данная модель впервые совершила полет в 1953 году.
Создавались и пассажирские сверхзвуковые самолеты, которые выполняли регулярные рейсы. Но их было всего 2: советский Ту-144 и англо-французский Concorde.
Сверхзвуковой пассажирский самолет Ту-144
Преимущество таких самолетов – это преодоление больших расстояний за короткий промежуток времени. Также сверхзвуковой самолет перемещается на большей высоте по сравнению с обычными. Соответственно, воздушное пространство не загружено. Но от их использования вскоре отказались из-за нескольких недостатков:
Громкий хлопок – это резкий скачок давления перед самолетом, образующийся в момент, когда самолет начинает двигаться со сверхзвуковой скоростью (преодолевает звуковой барьер). Ударная волна, возникающая перед самолетом, распространяется конусообразно. Человек, наблюдающий за полетом самолета, слышит хлопок, когда эта волна достигает его, и только после этого можно услышать работу двигателя. Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке – поблизости с наблюдателем.