Аутентификация сервера что это
Что такое Аутентификация: Методы и Элементы
Узнайте больше о том, для чего нужна аутентификация, и ознакомьтесь с её методами
Аутентификация (англ. authentication) — это основа безопасности любой системы, которая заключается в проверке подлинности данных о пользователе сервером.
Она не тождественна идентификации и авторизации. Эти три термина являются элементами защиты информации. Первая стадия — идентификация. На ней происходит распознавание информации о пользователе, например, логин и пароль. Вторая стадия — аутентификация. Это процесс проверки информации о пользователе. Третья стадия — авторизация. Здесь происходит проверка прав пользователя и определяется возможность доступа.
Содержание
Зачем нужна аутентификация
Аутентификация нужна для доступа к:
Элементы аутентификации
Методы аутентификации
Парольные
Самый распространенный метод. Аутентификация может проходить по одноразовым и многоразовым паролям. Многоразовый пароль задает пользователь, а система хранит его в базе данных. Он является одинаковым для каждой сессии. К ним относятся PIN-коды, слова, цифры, графические ключи. Одноразовые пароли — разные для каждой сессии. Это может быть SMS с кодом.
Комбинированные
Этот метод говорит сам за себя. Аутентификация происходит с использованием нескольких методов, например, парольных и криптографических сертификатов. Он требует специальное устройство для считывания информации.
Биометрические
Это самый дорогостоящий метод аутентификации. Он предотвращает утечку или кражу персональной информации. Проверка проходит по физиологическим характеристикам пользователя, например, по отпечатку пальца, сетчатке глаза, тембру голоса и даже ДНК.
Информация о пользователе
Она используется для восстановления логина или пароля и для двухэтапной аутентификации, чтобы обеспечить безопасность. К этому методу относится номер телефона, девичья фамилия матери, год рождения, дата регистрации, кличка питомца, место проживания.
Пользовательские данные
Этот метод основывается на геоданных о местоположении пользователя с использованием GPS, а также использует информацию о точках доступа беспроводной связи. Недостаток заключается в том, что с помощью прокси-серверов можно подменить данные.
Классификация видов аутентификации
В зависимости от количества используемых методов
В зависимости от политики безопасности систем и уровня доверия
Чтобы защитить владельца сайта от злоумышленников, используют криптографические протоколы аутентификации.
Типы протоколов обусловлены тем, где происходит аутентификация — на PC или в сети.
Аутентификация на PC
Аутентификация в сети
Ресурсы
Также искали с «Аутентификация»
Оценка: 4 / 5 (18)
Начните пользоваться сервисом SendPulse прямо сегодня
Если вам интересно, что такое «✅ Аутентификация: Определение, Методы, Виды», вам может быть интересен наш сервис рассылок.
Зачем нужен сервер аутентификации
Данные, информация, полномочия — самые большие ценности для любой современной компании, после человеческих ресурсов, конечно. Все чаще мы слышим новости о несанкционированном доступе к тем или иным ресурсам. Причем жертвами злоумышленников могут стать как коммерческие организации или банки, так и правительства государств. Плата за необеспеченную безопасность ресурсов может оказаться катастрофической для коммерческих компаний и крайне высокой для государственных. Начиная от прямых убытков и заканчивая банальной потерей лояльности клиентов и утратой конкурентных преимуществ.
Как же удается злоумышленникам получить доступ к информационным системам и системам банковского обслуживания, к почтовым ящикам и аккаунтам социальных сетей?
Цель аутентификации — максимально затруднить использование чужих (украденных, подобранных) учетных данных. Сам же этот процесс должен быть простым для легального пользователя. Всем давно понятно, что придумывание и запоминание стойких паролей длиной под двадцать символов может только раздражать юзера. В компании может быть несколько различных информационных систем и источников ресурсов, требующих аутентификации:
Простому пользователю, от которого требуют выполнять политику безопасности по сложности и уникальности паролей, буквально не позавидуешь.
Самое неприятное начинается, когда внутри компании решают, что необходимо обеспечить защиту, например, электронной почты. Помимо настройки TLS-шифрования, конечно, вспоминают о двухфакторной аутентификации, или, сокращенно, 2FA. Если почтовый сервер поддерживает 2FA «из коробки», то используют эту возможность. Если же такого функционала нет — компания может решить «допилить» его самостоятельно. Даже не буду углубляться в особенности доморощенных модулей аутентификации. Главное, что теперь у пользователя есть какой-то способ строгой аутентификации при входе в почтовый ящик: аппаратный или программный токен, смарт-карта или что-то еще.
Через какое-то время компания решает, что VPN-доступ по связке логин — пароль небезопасен, так что нужно использовать 2FA и для этой задачи. Но ведь первый токен, выданный пользователю, невозможно применить для чего-то еще, кроме доступа к почте. Так появляется второй токен, а вместе с ним и еще один модуль для двухфакторной аутентификации. Не будем забывать об администраторах, которым теперь нужно управлять всеми этими средствами аутентификации в удвоенном размере.
Следующим шагом может стать добавление строгой аутентификации для остальных критически важных систем. А в какой-то момент компания может прийти к выводу, что аутентификация с использованием одноразовых паролей не подходит для решаемых задач, и заменить ее аутентификацией по сертификатам или другим методом проверки подлинности. Использовавшиеся ранее генераторы одноразовых паролей заменят смарт-картами, а сам метод аутентификации будут переделывать в соответствии со вновь сложившимися требованиями. В сложившейся ситуации это очень не быстрый процесс.
В итоге мы имеем разрозненные системы аутентификации, не связанные между собой, не гибкие и требующие большого объема ресурсов для поддержки. Это ведет к дополнительным расходам и «неповоротливости» компании в случае изменений в способах аутентификации.
Сервер аутентификации — это единый центр администрирования всех процессов проверки подлинности сразу для всех приложений/сервисов/ресурсов. Промышленные такие серверы поддерживают целый набор методов аутентификации. Как правило, это OATH HOTP, TOTP, OCRA, PKI-сертификаты, RADIUS, LDAP, обычный пароль, SMS, CAP/DPA и многие другие. Каждый ресурс, использующий сервер аутентификации, может использовать метод, который требуется именно ему.
Администраторы получают единый интерфейс управления учетными данными пользователей, гибкие возможности по смене методов проверки подлинности. А бизнес, в свою очередь, получает надежную защиту доступа к сервисам и ресурсам в виде двухфакторной аутентификации, что, конечно, повышает лояльность пользователей, как внутренних, так и внешних.
Теперь добавление второго фактора для проверки подлинности не потребует от компании создания нового «костыля» для приложения и закупки новых токенов. Вообще добавление нового метода аутентификации — стандартная задача для подобных систем. Приведу пример. Банк А проверял подлинность владельцев дебетовых или кредитных карт в клиент-банке по сертификатам на USB-токенах. Его платежные карты были исключительно с магнитной полосой, но в какой-то момент банк наладил выпуск карт с EMV-чипом, который, по сути, является микрокомпьютером. Карту с EMV-чипом можно использовать для аутентификации по алгоритму Master Card Chip Authentication Program (CAP). То есть теперь банк А может отказаться от применения для каждого пользователя дорогостоящих PKI-токенов и сменить этот метод аутентификации на CAP, для которого требуется только недорогой криптокалькулятор. Через некоторое время банк А начинает выпуск платежных карт с дисплеем и реализованным алгоритмом OATH TOTP и для того, чтобы избавить пользователя от использования дополнительного криптокалькулятора, настраивает аутентификацию TOTP для клиент-банка. Следует понимать, что помимо дистанционного банковского обслуживания в банке А есть множество других сервисов, как внутренних, так и предназначенных для клиентов или партнеров, требующих аутентификации. Для каждого приложения служба информационной безопасности может выдвинуть свои требования по необходимым методам проверки подлинности пользователей. Вся аутентификация банка А может производиться на сервере аутентификации. Нет никакой необходимости заниматься разработками для каждого приложения отдельно.
Такая гибкость и легкость добавления новых методов проверки подлинности просто недостижима без сервера аутентификации. Сокращение времени на эти задачи настолько значительно, что позволяет говорить о быстроте ввода продукта в эксплуатацию как о конкурентном преимуществе. Ведь организация, предлагающая передовые технологические решения раньше остальных, заведомо более привлекательна для клиентов. Доступность строгой аутентификации в виде специализированного программного обеспечения позволяет добавлять многофакторность для приложений, которые прежде не обладали подобным функционалом, без многочисленных доработок. Практически все информационные системы, сервисы, приложения, не поддерживающие строгую аутентификацию «из коробки», могут использовать возможности сервера аутентификации для доступа пользователей.
Аутентификация — это отдельная, очень объемная область информационной безопасности. Если рассматривать ее как небольшую, незначительную часть какого-то продукта, то результат может оказаться очень и очень неприятным. Красивая форма ввода логина и пароля, может, и впечатлит легального пользователя, но точно не остановит злоумышленника. И даже реализованный собственными силами алгоритм проверки подлинности по сертификатам или любой другой алгоритм строгой аутентификации не позволит быть уверенным в отсутствии ошибок и уязвимостей. Даже сама реализация алгоритмов проверки подлинности уже требует высококвалифицированной профессиональной работы. Не говоря о криптографических алгоритмах, которые требуются для любого метода аутентификации. Ведь даже при использовании простого пароля требуется вычисление его хэша. Если модуль проверки подлинности разрабатывает дилетант, то результат в виде обнаружения злоумышленниками уязвимостей не заставит себя ждать.
Некоторые промышленные серверы аутентификации поддерживают использование Hardware Security Module (HSM). Это обеспечивает сохранность всей чувствительной информации путем шифрования. Ключи шифрования при таком подходе хранятся в аппаратном модуле HSM. Их невозможно извлечь, и даже все операции с этими ключами производятся только внутри HSM. Так достигаются высочайший уровень защищенности аутентификационных данных и высокая скорость работы криптографических алгоритмов, выполняемых внутри аппаратных модулей HSM.
Появление на рынке специализированных серверов аутентификации позволяет унифицировать подход к процедурам проверки подлинности внутри организации. Выделение аутентификации в отдельный слой безопасности в конечном счете обеспечит повышенную безопасность доступа к ресурсам компании и снижение затрат на администрирование, эксплуатацию и аудит.
Автор статьи — инженер по информационной безопасности компании «Пауэр Секьюрити».
Статьи
Зачем нужен сервер аутентификации
Данные, информация, полномочия — самые большие ценности для любой современной компании, после человеческих ресурсов, конечно. Все чаще мы слышим новости о несанкционированном доступе к тем или иным ресурсам. Причем жертвами злоумышленников могут стать как коммерческие организации или банки, так и правительства государств. Плата за необеспеченную безопасность ресурсов может оказаться катастрофической для коммерческих компаний и крайне высокой для государственных. Начиная от прямых убытков и заканчивая банальной потерей лояльности клиентов и утратой конкурентных преимуществ.
Как же удается злоумышленникам получить доступ к информационным системам и системам банковского обслуживания, к почтовым ящикам и аккаунтам социальных сетей?
Цель аутентификации — максимально затруднить использование чужих (украденных, подобранных) учетных данных. Сам же этот процесс должен быть простым для легального пользователя. Всем давно понятно, что придумывание и запоминание стойких паролей длиной под двадцать символов может только раздражать юзера. В компании может быть несколько различных информационных систем и источников ресурсов, требующих аутентификации:
Простому пользователю, от которого требуют выполнять политику безопасности по сложности и уникальности паролей, буквально не позавидуешь.
Самое неприятное начинается, когда внутри компании решают, что необходимо обеспечить защиту, например, электронной почты. Помимо настройки TLS-шифрования, конечно, вспоминают о двухфакторной аутентификации, или, сокращенно, 2FA. Если почтовый сервер поддерживает 2FA «из коробки», то используют эту возможность. Если же такого функционала нет — компания может решить «допилить» его самостоятельно. Даже не буду углубляться в особенности доморощенных модулей аутентификации. Главное, что теперь у пользователя есть какой-то способ строгой аутентификации при входе в почтовый ящик: аппаратный или программный токен, смарт-карта или что-то еще.
Через какое-то время компания решает, что VPN-доступ по связке логин — пароль небезопасен, так что нужно использовать 2FA и для этой задачи. Но ведь первый токен, выданный пользователю, невозможно применить для чего-то еще, кроме доступа к почте. Так появляется второй токен, а вместе с ним и еще один модуль для двухфакторной аутентификации. Не будем забывать об администраторах, которым теперь нужно управлять всеми этими средствами аутентификации в удвоенном размере.
Следующим шагом может стать добавление строгой аутентификации для остальных критически важных систем. А в какой-то момент компания может прийти к выводу, что аутентификация с использованием одноразовых паролей не подходит для решаемых задач, и заменить ее аутентификацией по сертификатам или другим методом проверки подлинности. Использовавшиеся ранее генераторы одноразовых паролей заменят смарт-картами, а сам метод аутентификации будут переделывать в соответствии со вновь сложившимися требованиями. В сложившейся ситуации это очень не быстрый процесс.
В итоге мы имеем разрозненные системы аутентификации, не связанные между собой, не гибкие и требующие большого объема ресурсов для поддержки. Это ведет к дополнительным расходам и «неповоротливости» компании в случае изменений в способах аутентификации.
Сервер аутентификации — это единый центр администрирования всех процессов проверки подлинности сразу для всех приложений/сервисов/ресурсов. Промышленные такие серверы поддерживают целый набор методов аутентификации. Как правило, это OATH HOTP, TOTP, OCRA, PKI-сертификаты, RADIUS, LDAP, обычный пароль, SMS, CAP/DPA и многие другие. Каждый ресурс, использующий сервер аутентификации, может использовать метод, который требуется именно ему.
Администраторы получают единый интерфейс управления учетными данными пользователей, гибкие возможности по смене методов проверки подлинности. А бизнес, в свою очередь, получает надежную защиту доступа к сервисам и ресурсам в виде двухфакторной аутентификации, что, конечно, повышает лояльность пользователей, как внутренних, так и внешних.
Теперь добавление второго фактора для проверки подлинности не потребует от компании создания нового «костыля» для приложения и закупки новых токенов. Вообще добавление нового метода аутентификации — стандартная задача для подобных систем. Приведу пример. Банк А проверял подлинность владельцев дебетовых или кредитных карт в клиент-банке по сертификатам на USB-токенах. Его платежные карты были исключительно с магнитной полосой, но в какой-то момент банк наладил выпуск карт с EMV-чипом, который, по сути, является микрокомпьютером. Карту с EMV-чипом можно использовать для аутентификации по алгоритму Master Card Chip Authentication Program (CAP). То есть теперь банк А может отказаться от применения для каждого пользователя дорогостоящих PKI-токенов и сменить этот метод аутентификации на CAP, для которого требуется только недорогой криптокалькулятор. Через некоторое время банк А начинает выпуск платежных карт с дисплеем и реализованным алгоритмом OATH TOTP и для того, чтобы избавить пользователя от использования дополнительного криптокалькулятора, настраивает аутентификацию TOTP для клиент-банка. Следует понимать, что помимо дистанционного банковского обслуживания в банке А есть множество других сервисов, как внутренних, так и предназначенных для клиентов или партнеров, требующих аутентификации. Для каждого приложения служба информационной безопасности может выдвинуть свои требования по необходимым методам проверки подлинности пользователей. Вся аутентификация банка А может производиться на сервере аутентификации. Нет никакой необходимости заниматься разработками для каждого приложения отдельно.
Такая гибкость и легкость добавления новых методов проверки подлинности просто недостижима без сервера аутентификации. Сокращение времени на эти задачи настолько значительно, что позволяет говорить о быстроте ввода продукта в эксплуатацию как о конкурентном преимуществе. Ведь организация, предлагающая передовые технологические решения раньше остальных, заведомо более привлекательна для клиентов. Доступность строгой аутентификации в виде специализированного программного обеспечения позволяет добавлять многофакторность для приложений, которые прежде не обладали подобным функционалом, без многочисленных доработок. Практически все информационные системы, сервисы, приложения, не поддерживающие строгую аутентификацию «из коробки», могут использовать возможности сервера аутентификации для доступа пользователей.
Аутентификация — это отдельная, очень объемная область информационной безопасности. Если рассматривать ее как небольшую, незначительную часть какого-то продукта, то результат может оказаться очень и очень неприятным. Красивая форма ввода логина и пароля, может, и впечатлит легального пользователя, но точно не остановит злоумышленника. И даже реализованный собственными силами алгоритм проверки подлинности по сертификатам или любой другой алгоритм строгой аутентификации не позволит быть уверенным в отсутствии ошибок и уязвимостей. Даже сама реализация алгоритмов проверки подлинности уже требует высококвалифицированной профессиональной работы. Не говоря о криптографических алгоритмах, которые требуются для любого метода аутентификации. Ведь даже при использовании простого пароля требуется вычисление его хэша. Если модуль проверки подлинности разрабатывает дилетант, то результат в виде обнаружения злоумышленниками уязвимостей не заставит себя ждать.
Некоторые промышленные серверы аутентификации поддерживают использование Hardware Security Module (HSM). Это обеспечивает сохранность всей чувствительной информации путем шифрования. Ключи шифрования при таком подходе хранятся в аппаратном модуле HSM. Их невозможно извлечь, и даже все операции с этими ключами производятся только внутри HSM. Так достигаются высочайший уровень защищенности аутентификационных данных и высокая скорость работы криптографических алгоритмов, выполняемых внутри аппаратных модулей HSM.
Появление на рынке специализированных серверов аутентификации позволяет унифицировать подход к процедурам проверки подлинности внутри организации. Выделение аутентификации в отдельный слой безопасности в конечном счете обеспечит повышенную безопасность доступа к ресурсам компании и снижение затрат на администрирование, эксплуатацию и аудит.
Cтатья была впервые опубликована в PCWeek
Обзор способов и протоколов аутентификации в веб-приложениях
Я расскажу о применении различных способов аутентификации для веб-приложений, включая аутентификацию по паролю, по сертификатам, по одноразовым паролям, по ключам доступа и по токенам. Коснусь технологии единого входа (Single Sign-On), рассмотрю различные стандарты и протоколы аутентификации.
Перед тем, как перейти к техническим деталям, давайте немного освежим терминологию.
Аналогично эти термины применяются в компьютерных системах, где традиционно под идентификацией понимают получение вашей учетной записи (identity) по username или email; под аутентификацией — проверку, что вы знаете пароль от этой учетной записи, а под авторизацией — проверку вашей роли в системе и решение о предоставлении доступа к запрошенной странице или ресурсу.
Однако в современных системах существуют и более сложные схемы аутентификации и авторизации, о которых я расскажу далее. Но начнем с простого и понятного.
Аутентификация по паролю
Этот метод основывается на том, что пользователь должен предоставить username и password для успешной идентификации и аутентификации в системе. Пара username/password задается пользователем при его регистрации в системе, при этом в качестве username может выступать адрес электронной почты пользователя.
Применительно к веб-приложениям, существует несколько стандартных протоколов для аутентификации по паролю, которые мы рассмотрим ниже.
HTTP authentication
Этот протокол, описанный в стандартах HTTP 1.0/1.1, существует очень давно и до сих пор активно применяется в корпоративной среде. Применительно к веб-сайтам работает следующим образом:
Весь процесс стандартизирован и хорошо поддерживается всеми браузерами и веб-серверами. Существует несколько схем аутентификации, отличающихся по уровню безопасности:
Forms authentication
Для этого протокола нет определенного стандарта, поэтому все его реализации специфичны для конкретных систем, а точнее, для модулей аутентификации фреймворков разработки.
Работает это по следующему принципу: в веб-приложение включается HTML-форма, в которую пользователь должен ввести свои username/password и отправить их на сервер через HTTP POST для аутентификации. В случае успеха веб-приложение создает session token, который обычно помещается в browser cookies. При последующих веб-запросах session token автоматически передается на сервер и позволяет приложению получить информацию о текущем пользователе для авторизации запроса.
Пример forms authentication.
Приложение может создать session token двумя способами:
Другие протоколы аутентификации по паролю
Два протокола, описанных выше, успешно используются для аутентификации пользователей на веб-сайтах. Но при разработке клиент-серверных приложений с использованием веб-сервисов (например, iOS или Android), наряду с HTTP аутентификацией, часто применяются нестандартные протоколы, в которых данные для аутентификации передаются в других частях запроса.
Существует всего несколько мест, где можно передать username и password в HTTP запросах:
Распространенные уязвимости и ошибки реализации
Аутентификации по паролю считается не очень надежным способом, так как пароль часто можно подобрать, а пользователи склонны использовать простые и одинаковые пароли в разных системах, либо записывать их на клочках бумаги. Если злоумышленник смог выяснить пароль, то пользователь зачастую об этом не узнает. Кроме того, разработчики приложений могут допустить ряд концептуальных ошибок, упрощающих взлом учетных записей.
Ниже представлен список наиболее часто встречающихся уязвимостей в случае использования аутентификации по паролю:
Аутентификация по сертификатам
Сертификат представляет собой набор атрибутов, идентифицирующих владельца, подписанный certificate authority (CA). CA выступает в роли посредника, который гарантирует подлинность сертификатов (по аналогии с ФМС, выпускающей паспорта). Также сертификат криптографически связан с закрытым ключом, который хранится у владельца сертификата и позволяет однозначно подтвердить факт владения сертификатом.
На стороне клиента сертификат вместе с закрытым ключом могут храниться в операционной системе, в браузере, в файле, на отдельном физическом устройстве (smart card, USB token). Обычно закрытый ключ дополнительно защищен паролем или PIN-кодом.
В веб-приложениях традиционно используют сертификаты стандарта X.509. Аутентификация с помощью X.509-сертификата происходит в момент соединения с сервером и является частью протокола SSL/TLS. Этот механизм также хорошо поддерживается браузерами, которые позволяют пользователю выбрать и применить сертификат, если веб-сайт допускает такой способ аутентификации.
Использование сертификата для аутентификации.
Во время аутентификации сервер выполняет проверку сертификата на основании следующих правил:
Пример X.509 сертификата.
После успешной аутентификации веб-приложение может выполнить авторизацию запроса на основании таких данных сертификата, как subject (имя владельца), issuer (эмитент), serial number (серийный номер сертификата) или thumbprint (отпечаток открытого ключа сертификата).
Использование сертификатов для аутентификации — куда более надежный способ, чем аутентификация посредством паролей. Это достигается созданием в процессе аутентификации цифровой подписи, наличие которой доказывает факт применения закрытого ключа в конкретной ситуации (non-repudiation). Однако трудности с распространением и поддержкой сертификатов делает такой способ аутентификации малодоступным в широких кругах.
Аутентификация по одноразовым паролям
Аутентификация по одноразовым паролям обычно применяется дополнительно к аутентификации по паролям для реализации two-factor authentication (2FA). В этой концепции пользователю необходимо предоставить данные двух типов для входа в систему: что-то, что он знает (например, пароль), и что-то, чем он владеет (например, устройство для генерации одноразовых паролей). Наличие двух факторов позволяет в значительной степени увеличить уровень безопасности, что м. б. востребовано для определенных видов веб-приложений.
Другой популярный сценарий использования одноразовых паролей — дополнительная аутентификация пользователя во время выполнения важных действий: перевод денег, изменение настроек и т. п.
Существуют разные источники для создания одноразовых паролей. Наиболее популярные:
Аппаратный токен RSA SecurID генерирует новый код каждые 30 секунд.
В веб-приложениях такой механизм аутентификации часто реализуется посредством расширения forms authentication: после первичной аутентификации по паролю, создается сессия пользователя, однако в контексте этой сессии пользователь не имеет доступа к приложению до тех пор, пока он не выполнит дополнительную аутентификацию по одноразовому паролю.
Аутентификация по ключам доступа
Этот способ чаще всего используется для аутентификации устройств, сервисов или других приложений при обращении к веб-сервисам. Здесь в качестве секрета применяются ключи доступа (access key, API key) — длинные уникальные строки, содержащие произвольный набор символов, по сути заменяющие собой комбинацию username/password.
В большинстве случаев, сервер генерирует ключи доступа по запросу пользователей, которые далее сохраняют эти ключи в клиентских приложениях. При создании ключа также возможно ограничить срок действия и уровень доступа, который получит клиентское приложение при аутентификации с помощью этого ключа.
Хороший пример применения аутентификации по ключу — облако Amazon Web Services. Предположим, у пользователя есть веб-приложение, позволяющее загружать и просматривать фотографии, и он хочет использовать сервис Amazon S3 для хранения файлов. В таком случае, пользователь через консоль AWS может создать ключ, имеющий ограниченный доступ к облаку: только чтение/запись его файлов в Amazon S3. Этот ключ в результате можно применить для аутентификации веб-приложения в облаке AWS.
Пример применения аутентификации по ключу.
Использование ключей позволяет избежать передачи пароля пользователя сторонним приложениям (в примере выше пользователь сохранил в веб-приложении не свой пароль, а ключ доступа). Ключи обладают значительно большей энтропией по сравнению с паролями, поэтому их практически невозможно подобрать. Кроме того, если ключ был раскрыт, это не приводит к компрометации основной учетной записи пользователя — достаточно лишь аннулировать этот ключ и создать новый.
С технической точки зрения, здесь не существует единого протокола: ключи могут передаваться в разных частях HTTP-запроса: URL query, request body или HTTP header. Как и в случае аутентификации по паролю, наиболее оптимальный вариант — использование HTTP header. В некоторых случаях используют HTTP-схему Bearer для передачи токена в заголовке (Authorization: Bearer [token]). Чтобы избежать перехвата ключей, соединение с сервером должно быть обязательно защищено протоколом SSL/TLS.
Пример аутентификации по ключу доступа, переданного в HTTP заголовке.
Кроме того, существуют более сложные схемы аутентификации по ключам для незащищенных соединений. В этом случае, ключ обычно состоит их двух частей: публичной и секретной. Публичная часть используется для идентификации клиента, а секретная часть позволяет сгенерировать подпись. Например, по аналогии с digest authentication схемой, сервер может послать клиенту уникальное значение nonce или timestamp, а клиент — возвратить хэш или HMAC этого значения, вычисленный с использованием секретной части ключа. Это позволяет избежать передачи всего ключа в оригинальном виде и защищает от replay attacks.
Аутентификация по токенам
Такой способ аутентификации чаще всего применяется при построении распределенных систем Single Sign-On (SSO), где одно приложение (service provider или relying party) делегирует функцию аутентификации пользователей другому приложению (identity provider или authentication service). Типичный пример этого способа — вход в приложение через учетную запись в социальных сетях. Здесь социальные сети являются сервисами аутентификации, а приложение доверяет функцию аутентификации пользователей социальным сетям.
Реализация этого способа заключается в том, что identity provider (IP) предоставляет достоверные сведения о пользователе в виде токена, а service provider (SP) приложение использует этот токен для идентификации, аутентификации и авторизации пользователя.
На общем уровне, весь процесс выглядит следующим образом:
Пример аутентификации «активного» клиента при помощи токена, переданного посредством Bearer схемы.
Процесс, описанный выше, отражает механизм аутентификации активного клиента, т. е. такого, который может выполнять запрограммированную последовательность действий (например, iOS/Android приложения). Браузер же — пассивный клиент в том смысле, что он только может отображать страницы, запрошенные пользователем. В этом случае аутентификация достигается посредством автоматического перенаправления браузера между веб-приложениями identity provider и service provider.
Пример аутентификации «пассивного» клиента посредством перенаправления запросов.
Существует несколько стандартов, в точности определяющих протокол взаимодействия между клиентами (активными и пассивными) и IP/SP-приложениями и формат поддерживаемых токенов. Среди наиболее популярных стандартов — OAuth, OpenID Connect, SAML, и WS-Federation. Некоторая информация об этих протоколах — ниже в статье.
Сам токен обычно представляет собой структуру данных, которая содержит информацию, кто сгенерировал токен, кто может быть получателем токена, срок действия, набор сведений о самом пользователе (claims). Кроме того, токен дополнительно подписывается для предотвращения несанкционированных изменений и гарантий подлинности.
При аутентификации с помощью токена SP-приложение должно выполнить следующие проверки:
В случае успешной проверки SP-приложение выполняет авторизацию запроса на основании данных о пользователе, содержащихся в токене.
Форматы токенов
Существует несколько распространенных форматов токенов для веб-приложений:
Пример SWT токена (после декодирования).
Issuer=http://auth.myservice.com&
Audience=http://myservice.com&
ExpiresOn=1435937883&
UserName=John Smith&
UserRole=Admin&
HMACSHA256=KOUQRPSpy64rvT2KnYyQKtFFXUIggnesSpE7ADA4o9w
Пример подписанного JWT токена (после декодирования 1 и 2 блоков).
Стандарт SAML
Стандарт Security Assertion Markup Language (SAML) описывает способы взаимодействия и протоколы между identity provider и service provider для обмена данными аутентификации и авторизации посредством токенов. Изначально версии 1.0 и 1.1 были выпущены в 2002 – 2003 гг., в то время как версия 2.0, значительно расширяющая стандарт и обратно несовместимая, опубликована в 2005 г.
Этот основополагающий стандарт — достаточно сложный и поддерживает много различных сценариев интеграции систем. Основные «строительные блоки» стандарта:
Кроме того, стандарт определяет формат обмена метаинформацией между участниками, которая включает список поддерживаемых ролей, протоколов, атрибутов, ключи шифрования и т. п.
Рассмотрим краткий пример использования SAML для сценария Single Sign-On. Пользователь хочет получить доступ на защищенный ресурс сервис-провайдера (шаг № 1 на диаграмме аутентификации пассивных клиентов). Т. к. пользователь не был аутентифицирован, SP отправляет его на сайт identity provider’а для создания токена (шаг № 2). Ниже приведен пример ответа SP, где последний использует SAML HTTP Redirect binding для отправки сообщения с запросом токена:
В случае такого запроса, identity provider аутентифицирует пользователя (шаги №3-4), после чего генерирует токен. Ниже приведен пример ответа IP с использованием HTTP POST binding (шаг № 5):
После того как браузер автоматически отправит эту форму на сайт service provider’а (шаг № 6), последний декодирует токен и аутентифицирует пользователя. По результатам успешной авторизации запроса пользователь получает доступ к запрошенному ресурсу (шаг № 7).
Стандарты WS-Trust и WS-Federation
WS-Trust и WS-Federation входят в группу стандартов WS-*, описывающих SOAP/XML-веб сервисы. Эти стандарты разрабатываются группой компаний, куда входят Microsoft, IBM, VeriSign и другие. Наряду с SAML, эти стандарты достаточно сложные, используются преимущественно в корпоративных сценариях.
Стандарт WS-Trust описывает интерфейс сервиса авторизации, именуемого Secure Token Service (STS). Этот сервис работает по протоколу SOAP и поддерживает создание, обновление и аннулирование токенов. При этом стандарт допускает использование токенов различного формата, однако на практике в основном используются SAML-токены.
Стандарт WS-Federation касается механизмов взаимодействия сервисов между компаниями, в частности, протоколов обмена токенов. При этом WS-Federation расширяет функции и интерфейс сервиса STS, описанного в стандарте WS-Trust. Среди прочего, стандарт WS-Federation определяет:
Можно сказать, что WS-Federation позволяет решить те же задачи, что и SAML, однако их подходы и реализация в некоторой степени отличаются.
Стандарты OAuth и OpenID Connect
В отличие от SAML и WS-Federation, стандарт OAuth (Open Authorization) не описывает протокол аутентификации пользователя. Вместо этого он определяет механизм получения доступа одного приложения к другому от имени пользователя. Однако существуют схемы, позволяющие осуществить аутентификацию пользователя на базе этого стандарта (об этом — ниже).
Первая версия стандарта разрабатывалась в 2007 – 2010 гг., а текущая версия 2.0 опубликована в 2012 г. Версия 2.0 значительно расширяет и в то же время упрощает стандарт, но обратно несовместима с версией 1.0. Сейчас OAuth 2.0 очень популярен и используется повсеместно для предоставления делегированного доступа и третье-сторонней аутентификации пользователей.
Чтобы лучше понять сам стандарт, рассмотрим пример веб-приложения, которое помогает пользователям планировать путешествия. Как часть функциональности оно умеет анализировать почту пользователей на наличие писем с подтверждениями бронирований и автоматически включать их в планируемый маршрут. Возникает вопрос, как это веб-приложение может безопасно получить доступ к почте пользователей, например, к Gmail?
> Попросить пользователя указать данные своей учетной записи? — плохой вариант.
> Попросить пользователя создать ключ доступа? — возможно, но весьма сложно.
Как раз эту проблему и позволяет решить стандарт OAuth: он описывает, как приложение путешествий (client) может получить доступ к почте пользователя (resource server) с разрешения пользователя (resource owner). В общем виде весь процесс состоит из нескольких шагов:
Взаимодействие компонентов в стандарте OAuth.
Стандарт описывает четыре вида грантов, которые определяют возможные сценарии применения:
Стандарт не определяет формат токена, который получает приложение: в сценариях, адресуемых стандартом, приложению нет необходимости анализировать токен, т. к. он лишь используется для получения доступа к ресурсам. Поэтому ни токен, ни грант сами по себе не могут быть использованы для аутентификации пользователя. Однако если приложению необходимо получить достоверную информацию о пользователе, существуют несколько способов это сделать:
Стоит заметить, что OpenID Connect, заменивший предыдущие версии стандарта OpenID 1.0 и 2.0, также содержит набор необязательных дополнений для поиска серверов авторизации, динамической регистрации клиентов и управления сессией пользователя.
Заключение
В этой статье мы рассмотрели различные методы аутентификации в веб-приложениях. Ниже — таблица, которая резюмирует описанные способы и протоколы: