перечислите виды тестирования по доступу к коду приложения
Виды тестирования и подходы к их применению
Блочное (модульное, unit testing) тестирование наиболее понятное для программиста. Фактически это тестирование методов какого-то класса программы в изоляции от остальной программы.
Не всякий класс легко покрыть unit тестами. При проектировании нужно учитывать возможность тестируемости и зависимости класса делать явными. Чтобы гарантировать тестируемость можно применять TDD методологию, которая предписывает сначала писать тест, а потом код реализации тестируемого метода. Тогда архитектура получается тестируемой. Распутывание зависимостей можно осуществить с помощью Dependency Injection. Тогда каждой зависимости явно сопоставляется интерфейс и явно определяется как инжектируется зависимость — в конструктор, в свойство или в метод.
Для осуществления unit тестирования существуют специальные фреймворки. Например, NUnit или тестовый фреймфорк из Visual Studio 2008. Для возможности тестирования классов в изоляции существуют специальные Mock фреймворки. Например, Rhino Mocks. Они позволяют по интерфейсам автоматически создавать заглушки для классов-зависимостей, задавая у них требуемое поведение.
По unit тестированию написано много статей. Мне очень нравится MSDN статья Write Maintainable Unit Tests That Will Save You Time And Tears, в которой хорошо и понятно рассказывается как создавать тесты, поддерживать которые со временем не становится обременительно.
Интеграционное тестирование
Интеграционное тестирование, на мой взгляд, наиболее сложное для понимания. Есть определение — это тестирование взаимодействия нескольких классов, выполняющих вместе какую-то работу. Однако как по такому определению тестировать не понятно. Можно, конечно, отталкиваться от других видов тестирования. Но это чревато.
Если к нему подходить как к unit-тестированию, у которого в тестах зависимости не заменяются mock-объектами, то получаем проблемы. Для хорошего покрытия нужно написать много тестов, так как количество возможных сочетаний взаимодействующих компонент — это полиномиальная зависимость. Кроме того, unit-тесты тестируют как именно осуществляется взаимодействие (см. тестирование методом белого ящика). Из-за этого после рефакторинга, когда какое-то взаимодействие оказалось выделенным в новый класс, тесты рушатся. Нужно применять менее инвазивный метод.
Подходить же к интеграционному тестированию как к более детализированному системному тоже не получается. В этом случае наоборот тестов будет мало для проверки всех используемых в программе взаимодействий. Системное тестирование слишком высокоуровневое.
Идея простая. У нас есть входные данные, и мы знаем как программа должна отработать на них. Запишем эти знания в текстовый файл. Это будет спецификация к тестовым данным, в которой записано, какие результаты ожидаются от программы. Тестирование же будет определять соответствие спецификации и того, что действительно находит программа.
Проиллюстрирую на примере. Программа конвертирует один формат документа в другой. Конвертирование хитрое и с кучей математических расчетов. Заказчик передал набор типичных документов, которые ему требуется конвертировать. Для каждого такого документа мы напишем спецификацию, где запишем всякие промежуточные результаты, до которых дойдет наша программа при конвертировании. 1) Допустим в присланных документах есть несколько разделов. Тогда в спецификации мы можем указать, что у разбираемого документа должны быть разделы с указанными именами: $SectionNames = Введение, Текст статьи, Заключение, Литература 2) Другой пример. При конвертировании нужно разбивать геометрические фигуры на примитивы. Разбиение считается удачным, если в сумме все примитивы полностью покрывают оригинальную фигуру. Из присланных документов выберем различные фигуры и для них напишем свои спецификации. Факт покрываемости фигуры примитивами можно отразить так: $IsCoverable = true |
Понятно, что для проверки подобных спецификаций потребуется движок, который бы считывал спецификации и проверял их соответствие поведению программы. Я такой движок написал и остался доволен данным подходом. Скоро выложу движок в Open Source. (UPD: Выложил)
Данный вид тестирования является интеграционным, так как при проверке вызывается код взаимодействия нескольких классов. Причем важен только результат взаимодействия, а не детали и порядок вызовов. Поэтому на тесты не влияет рефакторинг кода. Не происходит избыточного или недостаточного тестирования — тестируются только те взаимодействия, которые встречаются при обработке реальных данных. Сами тесты легко поддерживать, так как спецификация хорошо читается и ее просто изменять в соответствии с новыми требованиями.
Системное тестирование
Системное — это тестирование программы в целом. Для небольших проектов это, как правило, ручное тестирование — запустил, пощелкал, убедился, что (не) работает. Можно автоматизировать. К автоматизации есть два подхода.
Первый подход — это использовать вариацию MVC паттерна — Passive View (вот еще хорошая статья по вариациям MVC паттерна) и формализовать взаимодействие пользователя с GUI в коде. Тогда системное тестирование сводится к тестированию Presenter классов, а также логики переходов между View. Но тут есть нюанс. Если тестировать Presenter классы в контексте системного тестирования, то необходимо как можно меньше зависимостей подменять mock объектами. И тут появляется проблема инициализации и приведения программы в нужное для начала тестирования состояние. В упомянутой выше статье Scenario Driven Tests об этом говорится подробнее.
Теория тестирования ПО просто и понятно
Привет, Хабр! Да-да, про тестирование ПО тут уже куча статей. Здесь я просто буду стараться структурировать как можно более полный охват данных из разных источников (чтобы по теории все основное было сразу в одном месте, и новичкам, например, было легче ориентироваться). При этом, чтобы статья не казалась слишком громоздкой, информация будет представлена без излишней детализации, как необходимая и достаточная для прохождения собеседования (согласно моему опыту), рассчитанное на стажеров/джунов.
ОСНОВНЫЕ ТЕРМИНЫ
планирование работ (Test Management)
проектирование тестов (Test Design)
Тест дизайн — это этап, на котором создаются тестовые сценарии (тест кейсы), в соответствии с определёнными ранее критериями. Т.е., определяется, КАК будет тестироваться продукт.
анализ результатов (Test Analysis)
Основные цели тестирования
техническая: предоставление актуальной информации о состоянии продукта на данный момент.
коммерческая: повышение лояльности к компании и продукту, т.к. любой обнаруженный дефект негативно влияет на доверие пользователей.
Верификация (verification)
Валидация (validation)
Соответствие продукта требованиям (спецификации)
Соответствие продукта потребностям пользователей
Дефект (баг) — это несоответствие фактического результата выполнения программы ожидаемому результату.
Следует уметь различать, что:
Error — это ошибка пользователя, то есть он пытается использовать программу иным способом (например, вводит буквы в поля, где требуется вводить цифры). В качественной программе предусмотрены такие ситуации и выдаются сообщение об ошибке (error message).
Bug (defect) — это ошибка программиста (или дизайнера или ещё кого, кто принимает участие в разработке), то есть когда в программе, что-то идёт не так, как планировалось. Например, внутри программа построена так, что изначально не соответствует тому, что от неё ожидается.
Failure — это сбой в работе компонента, всей программы или системы (может быть как аппаратным, так и вызванным дефектом).
Жизненный цикл бага
Серьезность (Severity) — характеризует влияние дефекта на работоспособность приложения. Выставляется тестировщиком.
Градация Серьезности дефекта
Приоритет (Priority) — указывает на очередность выполнения задачи или устранения дефекта. Чем выше приоритет, тем быстрее нужно исправлять дефект. Выставляется менеджером, тимлидом или заказчиком.
НЕКОТОРЫЕ ТЕХНИКИ ТЕСТ-ДИЗАЙНА
Эквивалентное Разделение (Equivalence Partitioning) — это техника, при которой функционал (часто диапазон возможных вводимых значений) разделяется на группы эквивалентных по своему влиянию на систему значений. Как пример, есть диапазон допустимых значений от 1 до 10, выбирается одно верное значение внутри интервала (например, 5) и одно неверное значение вне интервала — 0.
Анализ Граничных Значений (Boundary Value Analysis) — это техника проверки поведения продукта на крайних (граничных) значениях входных данных. Если брать пример выше, в качестве значений для позитивного тестирования берется минимальная и максимальная границы (1 и 10), и значения больше и меньше границ (0 и 11). BVA может применяться к полям, записям, файлам, или к любого рода сущностям имеющим ограничения.
Доменный анализ (Domain Analysis Testing) — это техника основана на разбиении диапазона возможных значений переменной на поддиапазоны, с последующим выбором одного или нескольких значений из каждого домена для тестирования.
Предугадывание ошибки (Error Guessing — EG). Это когда тестировщик использует свои знания системы и способность к интерпретации спецификации на предмет того, чтобы «предугадать» при каких входных условиях система может выдать ошибку.
Причина / Следствие (Cause/Effect — CE). Подразумевается ввод условий, для получения ответа от системы (следствие).
Сценарий использования (Use Case Testing) — Use Case описывает сценарий взаимодействия двух и более участников (как правило — пользователя и системы).
Исчерпывающее тестирование (Exhaustive Testing — ET) — подразумевается проверка всех возможные комбинации входных значений. На практике не используется.
Попарное тестирование (Pairwise Testing) — это техника формирования наборов тестовых данных из полного набора входных данных в системе, которая позволяет существенно сократить общее количество тест-кейсов. Используется для тестирования, например, фильтров, сортировок. Этот интересный метод заслуживает отдельного внимания и более подробно рассматривается в статье по ссылке (в конце которой упоминаются инструменты для автоматизации применения PT ).
Тестирование на основе состояний и переходов (State-Transition Testing) — применяется для фиксирования требований и описания дизайна приложения.
Таблица принятия решений (decision table) — инструмент для упорядочения бизнес-требований, которые должны быть реализованы в продукте. Применяется для систем со сложной логикой. В таблицах решений представлен набор условий, одновременное выполнение которых приводит к определенному действию.
Пример таблицы принятия решений
ВИДЫ ТЕСТИРОВАНИЯ
Классификация по целям
Функциональное тестирование (functional testing) рассматривает заранее указанное поведение и основывается на анализе спецификации компонента или системы в целом, т.е. проверяется корректность работы функциональности приложения.
Нефункциональное тестирование (non-functional testing) — тестирование атрибутов компонента или системы, не относящихся к функциональности.
Тестирование пользовательского интерфейса (GUI Testing) — проверка интерфейса на соответствие требованиям (размер, шрифт, цвет, consistent behavior).
Тестирование удобства использования (Usability Testing) — это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий. Состоит из: UX — что испытывает пользователь во время использования цифрового продукта, и UI — инструмент, позволяющий осуществлять интеракцию «пользователь — веб-ресурс».
Тестирование безопасности (security testing) — это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.
Инсталляционное тестирование (installation testing) направленно на проверку успешной установки и настройки, а также обновления или удаления приложения.
Конфигурационное тестирование (Configuration Testing) — специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)
Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться, т.е. обеспечивать сохранность и целостность данных, после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети).
Тестирование локализации (localization testing) — проверка адаптации программного обеспечения для определенной аудитории в соответствии с ее культурными особенностями.
Тестирование производительности (performance testing) — определение стабильности и потребления ресурсов в условиях различных сценариев использования и нагрузок.
Нагрузочное тестирование (load testing) — определение или сбор показателей производительности и времени отклика программно-технической системы или устройства в ответ на внешний запрос с целью установления соответствия требованиям, предъявляемым к данной системе (устройству).
Тестирование стабильности или надежности (Stability / Reliability Testing) — это проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки.
Стрессовое тестирование (Stress Testing) позволяет проверить насколько приложение и система в целом работоспособны в условиях стресса (например, повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера) и также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию после прекращения воздействия стресса.
Объемное тестирование (Volume Testing) — тестирование, которое проводится для получения оценки производительности при увеличении объемов данных в базе данных приложения.
Тестирование масштабируемости (scalability testing) — тестирование, которое измеряет производительность сети или системы, когда количество пользовательских запросов увеличивается или уменьшается.
Классификация по позитивности сценария
Позитивное — тест кейс использует только корректные данные и проверяет, что приложение правильно выполнило вызываемую функцию.
Негативное — тест кейс оперирует как корректными так и некорректными данными (минимум 1 некорректный параметр) и ставит целью проверку исключительных ситуаций; при таком тестировании часто выполняются некорректные операции.
Классификация по знанию системы
Тестирование белого ящика (White Box) — метод тестирования ПО, который предполагает полный доступ к коду проекта, т.е. внутренняя структура/устройство/реализация системы известны тестировщику.
Тестирование серого ящика — метод тестирования ПО, который предполагает частичный доступ к коду проекта (комбинация White Box и Black Box методов).
Тестирование чёрного ящика (Black Box) — метод тестирования ПО, также известный как тестирование, основанное на спецификации или тестирование поведения — техника тестирования, которая не предполагает доступа (полного или частичного) к системе, т.е. основывается на работе исключительно с внешним интерфейсом тестируемой системы.
Классификация по исполнителям тестирования
Альфа-тестирование — является ранней версией программного продукта, тестирование которой проводится внутри организации-разработчика; может быть вероятно частичное привлечение конечных пользователей.
Бета-тестирование — практически готовое ПО, выпускаемое для ограниченного количества пользователей, разрабатывается в первую очередь для тестирования конечными пользователями и получения отзывов клиентов о продукте для внесения соответствующих изменений.
Классификация по уровню тестирования
Модульное (компонентное) тестирование (Unit Testing) проводится самими разработчиками, т.к. предполагает полный доступ к коду, для тестирования какого-либо одного логически выделенного и изолированного элемента (модуля) системы в коде, проверяет функциональность и ищет дефекты в частях приложения, которые доступны и могут быть протестированы по-отдельности (модули программ, объекты, классы, функции и т.д.).
Интеграционное тестирование (Integration Testing) направлено на проверку корректности взаимодействия нескольких модулей, объединенных в единое целое, т.е. проверяется взаимодействие между компонентами системы после проведения компонентного тестирования.
Подходы к интеграционному тестированию
Снизу вверх (Bottom Up Integration) Все низкоуровневые модули, процедуры или функции собираются воедино и затем тестируются. После чего собирается следующий уровень модулей для проведения интеграционного тестирования. Данный подход считается полезным, если все или практически все модули, разрабатываемого уровня, готовы. Также данный подход помогает определить по результатам тестирования уровень готовности приложения.
Сверху вниз (Top Down Integration) Вначале тестируются все высокоуровневые модули, и постепенно один за другим добавляются низкоуровневые. Все модули более низкого уровня симулируются заглушками с аналогичной функциональностью, затем по мере готовности они заменяются реальными активными компонентами.
Большой взрыв («Big Bang» Integration) Все или практически все разработанные модули собираются вместе в виде законченной системы или ее основной части, и затем проводится интеграционное тестирование. Такой подход очень хорош для сохранения времени. Однако если тест кейсы и их результаты записаны не верно, то сам процесс интеграции сильно осложнится, что станет преградой для команды тестирования при достижении основной цели интеграционного тестирования.
Системное тестирование (System Testing) — это проверка как функциональных, так и не функциональных требований в системе в целом. При этом выявляются дефекты, такие как неверное использование ресурсов системы, непредусмотренные комбинации данных пользовательского уровня, несовместимость с окружением, непредусмотренные сценарии использования и т.д., и оцениваются характеристики качества системы — ее устойчивость, надежность, безопасность и производительность.
Операционное тестирование (Release Testing). Даже если система удовлетворяет всем требованиям, важно убедиться в том, что она удовлетворяет нуждам пользователя и выполняет свою роль в среде своей эксплуатации. Поэтому так важно провести операционное тестирование как финальный шаг валидации. Кроме этого, тестирование в среде эксплуатации позволяет выявить и нефункциональные проблемы, такие как: конфликт с другими системами, смежными в области бизнеса или в программных и электронных окружениях и др. Очевидно, что нахождение подобных вещей на стадии внедрения — критичная и дорогостоящая проблема.
Классификация по исполнению кода
Статическое тестирование — процесс тестирования, который проводится для верификации практически любого артефакта разработки. Например, путем анализа программного (code review) или скомпилированного кода. Анализ может производиться как вручную, так и с помощью специальных инструментальных средств. Целью анализа является раннее выявление ошибок и потенциальных проблем в продукте. Также к этому виду относится тестирование требований, спецификаций и прочей документации.
Динамическое тестирование проводится на работающей системе, т.е. с осуществлением запуска программного кода приложения.
Классификация по хронологии выполнения
Повторное/подтверждающее тестирование (re-testing/confirmation testing) — тестирование, во время которого исполняются тестовые сценарии, выявившие ошибки во время последнего запуска, для подтверждения успешности исправления этих ошибок, т.е. проверяется исправление багов.
Регрессионное тестирование (regression testing) — это тестирование после внесения изменений в код приложения (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб сервер или сервер приложения), для подтверждения того факта, что эти изменения не внесли ошибки в областях, которые не подверглись изменениям, т.е. проверяется то, что исправление багов, а также любые изменения в коде приложения, не повлияли на другие модули ПО и не вызвали новых багов.
Приёмочное тестирование проверяет соответствие системы потребностям, требованиям и бизнес-процессам пользователя.
ДОКУМЕНТАЦИЯ
Требования — это спецификация (описание) того, что должно быть реализовано. Требования описывают то, что необходимо реализовать, без детализации технической стороны решения.
Основные атрибуты требований:
Полнота — в требовании должна содержаться вся необходимая для реализации функциональности информация.
Непротиворечивость — требование не должно содержать внутренних противоречий и противоречий другим требованиям и документам.
Недвусмысленность — требование должно содержать однозначные формулировки.
Проверяемость (тестопригодность) — формулировка требований таким образом, чтобы можно было выставить однозначный вердикт, выполнено все в соответствии с требованиями или нет.
Приоритетность — у каждого требования должен быть приоритет (количественная оценка степени значимости требования).
Тест план (Test Plan) — документ, описывающий весь объем работ по тестированию:
Что нужно тестировать?
Как будет проводиться тестирование?
Когда будет проводиться тестирование?
Критерии начала тестирования.
Критерии окончания тестирования.
Основные пункты из которых может состоять тест-план перечислены в стандарте IEEE 829.
Неотъемлемой частью тест-плана является Traceability matrix — Матрица соответствия требований (МСТ) — это таблица, содержащая соответствие функциональных требований (functional requirements) продукта и подготовленных тестовых сценариев (test cases). В заголовках колонок таблицы расположены требования, а в заголовках строк — тестовые сценарии. На пересечении — отметка, означающая, что требование текущей колонки покрыто тестовым сценарием текущей строки. МСТ используется для покрытия продукта тестами.
Виды тестирования
Все виды тестирования программного обеспечения, в зависимости от преследуемых целей, можно условно разделить на следующие группы:
Далее мы постараемся более подробно рассказать о каждом отдельном виде тестирования, его назначении и использовании при тестировании программного обеспечения.
Функциональные виды тестирования
Функциональные тесты базируются на функциях и особенностях, а также на взаимодействии с другими системами и могут быть представлены на всех уровнях тестирования: компонентном или модульном (Component/Unit testing), интеграционном (Integration testing), системном (System testing), приемочном (Acceptance testing). Функциональные виды тестирования рассматривают внешнее поведение системы. Далее перечислены одни из самых распространенных видов функциональных тестов.
Функциональное тестирование рассматривает заранее указанное поведение и основывается на анализе спецификаций функционтальности компонента или системы в целом.
1.Функциональные тесты основываются на функциях, выполняемых системой, и могут проводиться на всех уровнях тестирования (компонентном, интеграционном, системном, приемочном). Как правило, эти функции описываются в требованиях, функциональных спецификациях или в виде случаев использования системы (use cases).
Тестирование функциональности может проводиться в двух аспектах:
Тестирование в аспекте «требования» использует спецификацию функциональных требований к системе, как основу для дизайна тестовых случаев (Test Cases). В этом случае необходимо сделать список того, что будет тестироваться, а что нет, приоритезировать требования на основе рисков (если это не сделано в документе с требованиями), а на основе этого приоритезировать тестовые сценарии (test cases). Это позволит сфокусироваться и не упустить при тестировании наиболее важный функционал.
Тестирование в аспекте «бизнес-процессы» использует знание бизнес-процессов, которые описывают сценарии ежедневного использования системы. В этом аспекте тестовые сценарии (test scripts), как правило, основываются на случаях использования системы (use cases).
Преимущества функционального тестирования:
Недостатки функционального тестирования:
Достаточно распространенной является автоматизация функционального тестирования.
2. Тестирование безопасности (Security and Access Control Testing)
Тестирование безопасности — это стратегия тестирования, используемая для проверки безопасности системы, а также для анализа рисков, связанных с обеспечением целостного подхода к защите приложения, атак хакеров, вирусов, несанкционированного доступа к конфиденциальным данным.
Принципы безопасности программного обеспечения
Общая стратегия безопасности основывается на трех основных принципах:
Конфиденциальность
Конфиденциальность — это сокрытие определенных ресурсов или информации. Под конфиденциальностью можно понимать ограничение доступа к ресурсу некоторой категории пользователей или, другими словами, при каких условиях пользователь авторизован получить доступ к данному ресурсу.
Целостность
Существует два основных критерия при определении понятия целостности:
Доступность
Доступность представляет собой требования о том, что ресурсы должны быть доступны авторизованному пользователю, внутреннему объекту или устройству. Как правило, чем более критичен ресурс, тем выше уровень доступности должен быть.
3. Тестирование взаимодействия или Interoperability Testing
Тестирование взаимодействия (Interoperability Testing) – это функциональное тестирование, проверяющее способность приложения взаимодействовать с одним и более компонентами или системами и включающее в себя тестирование совместимости (compatibility testing) и интеграционное тестирование (integration testing).
Программное обеспечение с хорошими характеристиками взаимодействия может быть легко интегрировано с другими системами, не требуя каких-либо серьезных модификаций. В этом случае, количество изменений и время, требуемое на их выполнение, могут быть использованы для измерения возможности взаимодействия.
Нефункциональные виды тестирования
Нефункциональное тестирование описывает тесты, необходимые для определения характеристик программного обеспечения, которые могут быть измерены различными величинами. В целом, это тестирование того, как система работает.
1.Все виды тестирования производительности
Тестирование производительности ( Performance testing ).
Задачей тестирования производительности является определение масштабируемости приложения под нагрузкой, при этом происходит:
Стрессовое тестирование ( Stress Testing )
Стрессовое тестирование позволяет проверить, насколько приложение и система в целом работоспособны в условиях стресса, а также оценить способность системы к регенерации, т.е. к возвращению к нормальному состоянию, после прекращения воздействия стресса. Стрессом, в данном контексте, может быть повышение интенсивности выполнения операций до очень высоких значений или аварийное изменение конфигурации сервера. Также, одной из задач при стрессовом тестировании может быть оценка деградации производительности. Таким образом, цели стрессового тестирования могут пересекаться с целями тестирования производительности.
Объемное тестирование ( Volume Testing )
Задачей объемного тестирования является получение оценки производительности при увеличении объемов данных в базе данных приложения, при этом происходит:
Тестирование стабильности или надежности( Stability / Reliability Testing)
Задачей тестирования стабильности (надежности) является проверка работоспособности приложения при длительном (многочасовом) тестировании со средним уровнем нагрузки. Время выполнения операций может играть в данном виде тестирования второстепенную роль. При этом на первое место выходит отсутствие утечек памяти, перезапусков серверов под нагрузкой и другие аспекты влияющие именно на стабильность работы.
В англоязычной терминологии вы можете так же найти еще один вид тестирования — Load Testing — тестирование реакции системы на изменение нагрузки (в пределе допустимого). Нам показалось, что Load и Performance преследуют все же одну и ту же цель: проверка производительности (времени отклика) на разных нагрузках. Собственно поэтому мы и не стали разделять их. В то же время кто то может разделить. Главное все таки понимать цели того или иного вида тестирования и постараться их достигнуть.
2. Тестирование Установки (Installation Testing)
Тестирование установки направленно на проверку успешной инсталляции и настройки, а также на обновление или удаление программного обеспечения.
В настоящий момент, наиболее распространена установка ПО при помощи инсталляторов (специальных программ,которые сами по себе так же требуют надлежащего тестирования, описание которого рассмотрено в разделе «Особенности тестирования инсталляторов»).
В реальных условиях инсталляторов может не быть. В этом случае придется самостоятельно выполнять установку программного обеспечения, используя документацию в виде инструкций или «read me» файлов, шаг за шагом описывающих все необходимые действия и проверки.
В распределенных системах, где приложение разворачивается на уже работающем окружении, простого набора инструкций может быть мало. Для этого часто пишется план установки (Deployment Plan), включающий не только шаги по инсталляции приложения, но и шаги отката (roll-back) к предыдущей версии (в случае неудачи). Сам по себе план установки также должен пройти процедуру тестирования для избежания проблем при выдаче в реальную эксплуатацию. Особенно это актуально, если установка выполняется на системы, где каждая минута простоя — это потеря репутации и большого количества средств, например: банки, финансовые компании или даже баннерные сети. Поэтому тестирование установки можно назвать одной из важнейших задач по обеспечению качества программного обеспечения.
3. Тестирование удобства пользования (Usability Testing)
Иногда мы сталкиваемся с непонятными или нелогичными приложениями, многие функции и способы использования которых часто не очевидны. После такой работы редко возникает желание использовать приложение снова, и мы ищем более удобные аналоги. Для того, чтобы приложение было популярным, ему мало быть функциональным – оно должно быть еще и удобным. Если задуматься, интуитивно понятные приложения экономят нервы пользователям и затраты работодателя на обучение. Значит, они более конкурентоспособные! Поэтому тестирование удобства использования, о котором пойдет речь далее, является неотъемлемой частью тестирования любых массовых продуктов.
Тестирование удобства пользования — это метод тестирования, направленный на установление степени удобства использования, обучаемости, понятности и привлекательности для пользователей разрабатываемого продукта в контексте заданных условий.
Тестирование удобства пользования дает оценку уровня удобства использования приложения по следующим пунктам:
Уровни проведения
Проверка удобства использования может проводиться как по отношению к готовому продукту, посредством тестирования черного ящика (black box testing), так и к интерфейсам приложения (API), используемым при разработке — тестирование белого ящика (white box testing). В этом случае проверяется удобство использования внутренних объектов, классов, методов и переменных, а также рассматривается удобство изменения, расширения системы и интеграции ее с другими модулями или системами. Использование удобных интерфейсов (API) может улучшить качество, увеличить скорость написания и поддержки разрабатываемого кода и, как следствие, улучшить качество продукта в целом.
Отсюда становится очевидно, что тестирование удобства пользования может производиться на разных уровнях разработки программного обеспечения: модульном, интеграционном, системном, приемочном. При этом, оно целиком и полностью будет зависит от того, кто будет использовать приложение на выделенном конкретном уровне — разработчик, бизнес-пользователь системы и т.д.
Советы по улучшению удобства пользования:
Заблуждения о тестировании удобства пользования:
Тестирование удобства пользования не имеет ничего общего с тестированием функциональности пользовательского интерфейса, оно лишь проводится на пользовательском интерфейсе, равно как и на многих других возможных компонентах продукта. При этом, тип тестирования и тест-кейсы будут совсем другие, так как речь может идти об удобстве использования не визуальных компонентов (если таковые имеются) или процессе администрирования, например, распределенного клиент-серверного продукта и т.д.
Не всегда человек не разбирающийся в предметной области способен провести его самостоятельно. Представьте, что тестировщику нужно протестировать удобство пользования стратегического бомбардировщика. Ему придется проверить основные функции: удобство ведения боя, навигации, пилотирования, обслуживания, наземной транспортировки и т.д. Очевидно, что, без привлечения эксперта, это будет весьма проблематично, и, можно даже сказать, невозможно.
4. Тестирование на отказ и восстановление (Failover and Recovery Testing)
Тестирование на отказ и восстановление (Failover and Recovery Testing) проверяет тестируемый продукт с точки зрения способности противостоять и успешно восстанавливаться после возможных сбоев, возникших в связи с ошибками программного обеспечения, отказами оборудования или проблемами связи (например, отказ сети).
Целью данного вида тестирования является проверка систем восстановления (или дублирующих основной функционал систем), которые, в случае возникновения сбоев, обеспечат сохранность и целостность данных тестируемого продукта.
Тестирование на отказ и восстановление очень важно для систем, работающих по принципу “24×7”. Если Вы создаете продукт, который будет работать, например,в интернете, то без проведения данного вида тестирования Вам просто не обойтись, т.к. каждая минута простоя или потеря данных, в случае отказа оборудования, может стоить вам денег, потери клиентов и репутации на рынке.
Методика подобного тестирования заключается в симулировании различных условий сбоя и последующем изучении и оценке реакции защитных систем. В процессе подобных проверок выясняется, была ли достигнута требуемая степень восстановления системы после возникновения сбоя.
Для наглядности, рассмотрим некоторые варианты подобного тестирования и общие методы их проведения. Объектом тестирования, в большинстве случаев, являются весьма вероятные эксплуатационные проблемы, такие как:
Данные ситуации могут быть воспроизведены, как только достигнута некоторая точка в разработке, когда все системы восстановления или дублирования готовы выполнять свои функции. Технически реализовать тесты можно следующими путями:
При достижении соответствующих условий сбоя и по результатам работы систем восстановления, можно оценить продукт с точки зрения тестирования на отказ. Во всех вышеперечисленных случаях, по завершении процедур восстановления, должно быть достигнуто определенное требуемое состояние данных продукта:
Стоит заметить, что тестирование на отказ и восстановление – это весьма специфичное тестирование. Разработка тестовых сценариев должна производиться с учетом всех особенностей тестируемой системы. Принимая во внимание довольно жесткие методы воздействия, стоит также оценить целесообразность проведения данного вида тестирования для конкретного программного продукта.
5. Конфигурационное тестирование (Configuration Testing)
Конфигурационное тестирование(Configuration Testing) — специальный вид тестирования, направленный на проверку работы программного обеспечения при различных конфигурациях системы (заявленных платформах, поддерживаемых драйверах, при различных конфигурациях компьютеров и т.д.)
В зависимости от типа проекта конфигурационное тестирование может иметь разные цели:
Примечание: В ISTQB Syllabus вообще не говорится о таком виде тестирования, как конфигурационное. Согласно глоссарию, данный вид тестирования рассматривается там как тестирование портируемости(portability testing: The process of testing to determine the portability of a software product.).
Связанные с изменениями виды тестирования
После проведения необходимых изменений, таких как исправление багов/дефектов, программное обеспечение должно быть перетестировано для подтверждения того факта, что проблема была действительно решена. Ниже перечислены виды тестирования, которые необходимо проводить после установки программного обеспечения, для подтверждения работоспособности приложения или правильности осуществленного исправления дефекта:
1. Дымовое тестирование (Smoke Testing)
Понятие дымовое тестирование пошло из инженерной среды:
«При вводе в эксплуатацию нового оборудования («железа») считалось, что тестирование прошло удачно, если из установки не пошел дым.»
В области же программного обеспечения дымовое тестирование рассматривается как короткий цикл тестов, выполняемый для подтверждения того, что, после сборки кода (нового или исправленного), устанавливаемое приложение стартует и выполняет основные функции.
Вывод о работоспособности основных функций делается на основании результатов поверхностного тестирования наиболее важных модулей приложения на предмет возможности выполнения требуемых задач и наличия быстронаходимых критических и блокирующих дефектов. В случае отсутствия таковых дефектов дымовое тестирование объявляется пройденным и приложение передается для проведения полного цикла тестирования, в противном случае, дымовое тестирование объявляется проваленным и приложение уходит на доработку.
Аналогами дымового тестирования являются Build Verification Testing и Acceptance Testing, выполняемые на функциональном уровне командой тестирования, по результатам которых делается вывод о том, принимается или нет установленная версия программного обеспечения в тестирование, эксплуатацию или на поставку заказчику.
Для облегчения работы, экономии времени и людских ресурсов рекомендуется внедрить автоматизацию тестовых сценариев для дымового тестирования.
2. Регрессионное тестирование (Regression Testing)
Регрессионное тестирование — это вид тестирования, направленный на проверку изменений, сделанных в приложении или окружающей среде (починка дефекта, слияние кода, миграция на другую операционную систему, базу данных, веб-сервер или сервер приложения), для подтверждения того факта, что существующая ранее функциональность работает как и прежде. Регрессионными могут быть как функциональные, так и нефункциональные тесты.
Сам по себе термин «регрессионное тестирование», в зависимости от контекста использования, может иметь разный смысл. Сэм Канер, к примеру, описал 3 основных типа регрессионного тестирования:
3. Тестирование сборки (Build Verification Test)
Тестирование, направленное на определение соответствия выпущенной версии критериям качества для начала тестирования. По своим целям является аналогом дымового тестирования, направленного на приемку новой версии в дальнейшее тестирование или эксплуатацию. Вглубь оно может проникать дальше, в зависимости от требований к качеству выпущенной версии.
4. Санитарное тестирование или проверка согласованности/исправности (Sanity Testing)
Санитарное тестирование — это узконаправленное тестирование, достаточное для доказательства того, что конкретная функция работает согласно заявленным в спецификации требованиям. Является подмножеством регрессионного тестирования. Используется для определения работоспособности определенной части приложения после изменений произведенных в ней или окружающей среде. Обычно выполняется вручную.
Отличие санитарного тестирования от дымового (Sanity vs Smoke testing)
В некоторых источниках ошибочно полагают, что санитарное и дымовое тестирование — это одно и тоже. Мы же полагаем, что эти виды тестирования имеют «векторы движения»- направления в разные стороны. В отличии от дымового (Smoke testing), санитарное тестирование (Sanity testing) направлено вглубь проверяемой функции, в то время как дымовое — направлено вширь, для покрытия тестами как можно большего функционала в кратчайшие сроки.