основы клиент серверного приложения
Клиент-сервер шаг — за — шагом, от однопоточного до многопоточного (Client-Server step by step)
Цель публикации показать начинающим Java программистам все этапы создания многопоточного сервера. Для полного понимания данной темы основная информация содержится в комментариях моего кода и в выводимых в консоли сообщениях для лучшего понимания что именно происходит и в какой именно последовательности.
В начале будет рассмотрено создание элементарного клиент-сервера, для усвоения базовых знаний, на основе которых будет строиться многопоточная архитектура.
— Потоки: для того чтобы не перепутать что именно подразумевается под потоком я буду использовать существующий в профессиональной литературе синоним — нить, чтобы не путать Stream и Thread, всё-таки более профессионально выражаться — нить, говоря про Thread.
— Сокеты(Sockets): данное понятие тоже не однозначно, поскольку в какой-то момент сервер выполняет — клиентские действия, а клиент — серверные. Поэтому я разделил понятие серверного сокета — (ServerSocket) и сокета (Socket) через который практически осуществляется общение, его будем называть сокет общения, чтобы было понятно о чём речь.
Спасибо за подсказку про Thread.sleep();!
Конечно в реальном коде Thread.sleep(); устанавливать не нужно — это моветон! В данной публикации я его использую только для того чтобы выполнение программы было нагляднее, что бы успевать разобраться в происходящем.
Так что тестируйте, изучайте и в своём коде никогда не используйте Thread.sleep();!
1) Однопоточный элементарный сервер.
2) Клиент.
3) Многопоточный сервер – сам по себе этот сервер не участвует в общении напрямую, а лишь является фабрикой однонитевых делегатов(делегированных для ведения диалога с клиентами серверов) для общения с вновь подключившимися клиентами, которые закрываются после окончания общения с клиентом.
4) Имитация множественного обращения клиентов к серверу.
Итак, начнём с изучения структуры однопоточного сервер, который может принять только одного клиента для диалога. Код приводимый ниже необходимо запускать в своей IDE в этом идея всей статьи. Предлагаю все детали уяснить из подробно задокументированного кода ниже:
Сервер запущен и находится в блокирующем ожидании server.accept(); обращения к нему с запросом на подключение. Теперь можно подключаться клиенту, напишем код клиента и запустим его. Клиент работает когда пользователь вводит что-либо в его консоли (внимание! в данном случае сервер и клиент запускаются на одном компьютере с локальным адресом — localhost, поэтому при вводе строк, которые должен отправлять клиент не забудьте убедиться, что вы переключились в рабочую консоль клиента!).
После ввода строки в консоль клиента и нажатия enter строка проверяется не ввёл ли клиент кодовое слово для окончания общения дальше отправляется серверу, где он читает её и то же проверяет на наличие кодового слова выхода. Оба и клиент и сервер получив кодовое слово закрывают ресурсы после предварительных приготовлений и завершают свою работу.
Посмотрим как это выглядит в коде:
А что если к серверу хочет подключиться ещё один клиент!? Ведь описанный выше сервер либо находится в ожидании подключения одного клиента, либо общается с ним до завершения соединения, что делать остальным клиентам? Для такого случая нужно создать фабрику которая будет создавать описанных выше серверов при подключении к сокету новых клиентов и не дожидаясь пока делегированный подсервер закончит диалог с клиентом откроет accept() в ожидании следующего клиента. Но чтобы на серверной машине хватило ресурсов для общения со множеством клиентов нужно ограничить количество возможных подключений. Фабрика будет выдавать немного модифицированный вариант предыдущего сервера(модификация будет касаться того что класс сервера для фабрики будет имплементировать интерфейс — Runnable для возможности его использования в пуле нитей — ExecutorServices). Давайте создадим такую серверную фабрику и ознакомимся с подробным описанием её работы в коде:
Для имитации множественного обращения клиентов к серверу, создадим и запустим (после запуска серверной части) фабрику Runnable клиентов которые будут подключаться серверу и писать сообщения в цикле:
Как видно из предыдущего кода фабрика запускает — TestRunnableClientTester() клиентов, напишем для них код и после этого запустим саму фабрику, чтобы ей было кого исполнять в своём пуле:
Запускайте, вносите изменения в код, только так на самом деле можно понять работу этой структуры.
Архитектура «Клиент-Сервер»
Определение
Архитектура «Клиент-Сервер» (также используются термины «сеть Клиент-Сервер» или «модель Клиент-Сервер») предусматривает разделение процессов предоставление услуг и отправки запросов на них на разных компьютерах в сети, каждый из которых выполняют свои задачи независимо от других.
В архитектуре «Клиент-Сервер» несколько компьютеров-клиентов (удалённые системы) посылают запросы и получают услуги от централизованной служебной машины – сервера (server – англ. «официант, обслуга»), которая также может называться хост-системой (host system, от host – англ. «хозяин», обычно гостиницы).
Клиентская машина предоставляет пользователю т.н. «дружественный интерфейс» (user-friendly interface), чтобы облегчить его взаимодействие с сервером.
Рис. 1. Архитектура «Клиент-Сервер».
Типы клиент-серверной архитектуры
Архитектуру «клиент-сервер» принято разделять на три класса: одно-, двух- и трёхуровневую. Однако, нельзя сказать, что в вопросе о таком разделении в сообществе ИТ-специалистов существует полный консенсус. Многие называют одноуровневую архитектуру двухуровневой и наоборот, то же можно сказать о соотношении двух- и трёхуровневой архитектур.
Постараемся внести ясность в этот вопрос.
Одноуровневая архитектура (1-Tier)
Одноуровневая архитектура «клиент-сервер» (1-Tier) – такая, где все прикладные программы рассредоточены по рабочим станциям, которые обращаются к общему серверу баз данных или к общему файловому серверу. Никаких прикладных программ сервер при этом не исполняет, только предоставляет данные.
Рис. 2. Одноуровневая архитектура «клиент-сервер» (1-Tier).
В целом, такая архитектура очень надёжна, однако, ей сложно управлять, поскольку в каждой рабочей станции данные будут присутствовать в разных вариантах. Поэтому возникает проблема их синхронизации на отдельных машинах. В общем, как можно видеть из рисунка, в этой архитектуре просматривается ещё один уровень – базы данных, что даёт повод во многих случаях называть её двухуровневой.
Двухуровневая архитектура (2-Tier)
К двухуровневой архитектуре «клиент-сервер» следует относить такую, в которой прикладные программы сосредоточены на сервере приложений (Application Server), например, сервере 1С или сервере CRM, а в рабочих станциях находятся программы-клиенты, которые предоставляют для пользователей интерфейс для работы с приложениями на общем сервере.
Рис. 3. Двухуровневая архитектура «клиент-сервер» (2-Tier).
Такая архитектура представляется наиболее логичной для архитектуры «клиент-сервер». В ней, однако, можно выделить два варианта. Когда общие данные хранятся на сервере, а логика их обработки и бизнес-данные хранятся на клиентской машине, то такая архитектура носит название “fat client thin server” (толстый клиент, тонкий сервер). Когда не только данные, но и логика их обработки и бизнес-данные хранятся на сервере, то это называется “thin client fat server” (тонкий клиент, толстый сервер). Такая архитектура послужила прообразом облачных вычислений (Cloud Computing).
Преимущества двухуровневой архитектуры:
Однако, у двухуровневой архитектуры есть и ограничения:
Трёхуровневая архитектура (3-Tier)
В трёхуровневой архитектуре сервер баз данных, файловый сервер и другие представляют собой отдельный уровень, результаты работы которого использует сервер приложений. Логика данных и бизнес-логика находятся в сервере приложений. Все обращения клиентов к базе данных происходят через промежуточное программное обеспечение (middleware), которое находится на сервере приложений. Вследствие этого, повышается гибкость работы и производительность.
Рис. 4. Трёхуровневая архитектура «клиент-сервер» (3-Tier).
Преимущества трёхуровневой архитектуры:
Многоуровневая архитектура (N-Tier)
В отдельный класс архитектуры «клиент-сервер» можно вынести многоуровневую архитектуру, в которой несколько серверов приложений используют результаты работы друг друга, а также данные от различных серверов баз данных, файловых серверов и других видов серверов.
По сути, предыдущий вариант, трёхуровневая архитектура – не более, чем частный случай многоуровневой архитектуры.
Рис. 5. Многоуровневая архитектура «клиент-сервер» (N-Tier).
Преимуществом многоуровневой архитектуры является гибкость предоставления услуг, которые могут являться комбинацией работы различных приложений серверов разных уровней и элементов этих приложений.
Очевидным недостатком является сложность, многокомпонентность такой архитектуры.
Характеристики архитектуры «клиент-сервер»
Практические применения архитектуры «клиент-сервер»
Хорошим примером работы системы «клиент-сервер» является автомобильный навигатор. Приложение навигации на сервере собирает данные с многих смартфонов пользователей, на которых установлены клиенты приложения. Кроме того, приложение навигации использует ещё и данные с сервера базы данных – геоинформационной системы, который предоставляет данные, например, о текущих ремонтах дорог, о появлении новых дорог и пр. Данные со многих клиентов (местоположение, скорость) обрабатывается сервером навигации и выдаётся на смартфоны пользователей в виде информации о средней скорости движения по тому или иному участку маршрута.
Практически любая корпоративная сеть или ИТ-система предприятия, как правило, строится по архитектуре «клиент-сервер». В небольших сетях (3-5 компьютеров в компании) функции сервера может выполнять один из рабочих компьютеров. Если число машин в организации более 10, то лучше сделать выделенный сервер (почтовый сервер, приложений, баз данных и пр.), который будет заниматься обслуживанием клиентов – компьютеров и телефонов сотрудников организации.
В домашних сетях архитектура «клиент-сервер» тоже используется довольно часто. Например, в домашнюю сеть могут быть объединены компьютеры членов семьи, один из которых выполняет функции сервера. В домашнюю сеть также могут быть включены такие устройства, как умные колонки, умные домашние устройства (пылесосы-роботы, фотоаппараты, DVD-плееры и пр.), а также «умные» счётчики (вода, электричество) и т.д. Тогда в системе управления сервера, будут видны все параметры, данные и медифайлы (музыка, видео, фото), а также «умные устройства».
Преимущества и недостатки архитектуры «клиент-сервер»
К преимуществам архитектуры «клиент-сервер» можно отнести:
К недостаткам архитектуры «клиент-сервер» следует отнести:
Заключение
В настоящее время можно встретить термин Serverless Architecture, т.н. «бессерверная архитектура». Однако, по сути, она представляет собой процесс получения функций сервера в виде облачной услуги. То есть, серверы в облаке тоже есть, но для конечного пользователя они не видны, и он получает их сервисы в виде абстрактной «функции как услуги» FaaS (Function as a Service).
Архитектура «клиент-сервер» является основой большинства корпоративных сетей и берёт свое начало от самых первых вычислительных машин, т.н. «мэйнфреймов». Программное обеспечение для локальных компьютерных сетей, подавляющее большинство которых основано на архитектуре «клиент-сервер», начало создаваться около 50 лет назад.
Дальнейшее развитие информационных технологий также будет происходить в значительной степени с использованием архитектуры «клиент-сервер».
Клиент-сервер
Теперь, когда вы знаете цель и потенциальные преимущества программирования на стороне сервера, мы подробно рассмотрим, что происходит, когда сервер получает «динамический запрос» от браузера. Поскольку большая часть серверного кода веб-сайта обрабатывает запросы и ответы аналогичным образом, это поможет вам понять, что нужно делать при написании большей части собственного кода.
Перед стартом: | Базовая компьютерная грамотность. Базовое понимание того, что такое веб-сервер. |
---|---|
Цель: | Изучить взаимодействие между клиентом и сервером на динамическом веб-сайте и, в частности, узнать, какие действия нужно произвести в коде серверной части. |
В обсуждении нет реального кода, поскольку мы ещё не выбрали, какой именно веб-фреймворк будем использовать для написания нашего кода! Тем не менее, это обсуждение всё ещё очень актуально, поскольку описанное поведение должно быть реализовано вашим серверным кодом независимо от того, какой язык программирования или веб-фреймворк вы выберите.
Веб-серверы и HTTP (для начинающих)
Веб-браузеры взаимодействуют с веб-серверами при помощи протокола передачи гипертекста (HTTP). Когда вы кликаете на ссылку на странице, заполняете форму или производите поиск, браузер отправляет на сервер HTTP-запрос.
Этот запрос включает:
Веб-серверы ожидают сообщений с запросами от клиентов, обрабатывают их, когда они приходят и отвечают веб-браузеру через сообщение с HTTP-ответом. Ответ содержит Код статуса HTTP-ответа, который показывает, был ли запрос успешным (например, « 200 OK » означает успех, « 404 Not Found » если ресурс не может быть найден, « 403 Forbidden », если пользователь не имеет права просматривать ресурс, и т. д.). Тело успешного ответа на запрос GET будет содержать запрашиваемый ресурс.
После того как HTML-страница возвращена, она отрисовывается браузером. Во время этого браузер может обнаружить ссылки на другие ресурсы (например, HTML-страница обычно ссылается на JavaScript и CSS-файлы) и послать отдельные HTTP-запросы для загрузки этих файлов.
Как статические, так и динамические веб-сайты (речь о которых идёт в следующих разделах) используют точно такой же протокол/шаблоны обмена данными.
Пример GET запроса/ответа
Вы можете сформировать простой GET запрос кликнув по ссылке или через поиск по сайту (такой как страница поисковой системы). Например, HTTP-запрос, отправленный во время выполнения запроса «client server overview» на сайте MDN, будет во многом похож на текст ниже (он не будет идентичным, потому что части сообщения зависят от вашего браузера/настроек).
Формат HTTP сообщения определён в «веб-стандарте» (RFC7230). Вам не нужно знать этот уровень детализации, но, по крайней мере, теперь вы знаете, откуда это появилось!
Запрос
Каждая строка запроса содержит информацию о запросе. Первая часть называется заголовок и содержит важную информацию о запросе, точно так же, как HTML head содержит важную информацию о HTML-документе (но не содержимое документа, которое расположено внутри тэга «body»):
Первая и вторая строки содержат большую часть информации, о которой говорилось выше:
Оставшиеся строки содержат информацию об используемом браузере и о видах ответов, которые он может обработать. Например, здесь вы можете увидеть:
HTTP-запрос может также содержать body, но в данном случае этого нет.
Ответ
Первая часть ответа на запрос показана ниже. Заголовок содержит следующую информацию:
В конце сообщения мы видим содержимое body, содержащее HTML-код возвращаемого ответа.
Остальная часть заголовка ответа содержит информацию об ответе (например, когда он был сгенерирован), сервере и о том, как он ожидает, что браузер обработает страницу (например, строка X-Frame-Options: DENY говорит браузеру не допускать внедрения этой страницы, если она будет внедрена в (en-US) на другом сайте).
Пример POST запроса/ответа
HTTP POST создаётся, когда вы отправляете форму, содержащую информацию, которая должна быть сохранена на сервере.
Запрос
Основное различие заключается в том, что URL-адрес не имеет параметров. Как вы можете видеть, информация из формы закодирована в теле запроса (например, новое полное имя пользователя устанавливается с использованием: &user-fullname=Hamish+Willee ).
Ответ
На заметку: HTTP-ответы и запросы, показанные в этих примерах, были захвачены с помощью приложения Fiddler, но вы можете получить аналогичную информацию с помощью веб-снифферов (например, http://web-sniffer.net/) или с помощью расширений браузера, таких как HttpFox. Вы можете попробовать это сами. Воспользуйтесь любым из предложенных инструментов, а затем перейдите по сайту и отредактируйте информацию профиля, чтобы увидеть различные запросы и ответы. В большинстве современных браузеров также есть инструменты, которые отслеживают сетевые запросы (например, инструмент Network Monitor в Firefox).
Статические сайты
На заметку: Статические сайты превосходны, когда у вас небольшое количество страниц и вы хотите отправить один и тот же контент каждому пользователю. Однако их обслуживание может потребовать значительных затрат по мере увеличения количества страниц.
Давайте вспомним, как это работает, снова взглянув на диаграмму архитектуры статического сайта, на которую мы смотрели в последней статье.
Когда пользователь хочет перейти на страницу, браузер отправляет HTTP-запрос GET с указанием URL-адреса его HTML-страницы. Сервер извлекает запрошенный документ из своей файловой системы и возвращает HTTP-ответ, содержащий документ и код состояния HTTP Response status code 200 OK (успех). Сервер может вернуть другой код состояния, например, « 404 Not Found », если файл отсутствует на сервере или « 301 Moved Permanently », если файл существует, но был перемещён в другое место.
Серверу для статического сайта нужно будет только обрабатывать GET-запросы, потому что сервер не сохраняет никаких модифицируемых данных. Он также не изменяет свои ответы на основе данных HTTP-запроса (например, URL-параметров или файлов cookie).
Понимание того, как работают статические сайты, тем не менее полезно при изучении программирования на стороне сервера, поскольку динамические сайты точно так же обрабатывают запросы для статических файлов (CSS, JavaScript, статические изображения и т. д.).
Динамические сайты
Использование базы данных позволяет эффективно хранить информацию о товаре с помощью легко расширяемого, изменяемого и доступного для поиска способа.
Использование HTML-шаблонов позволяет очень легко изменить структуру HTML, потому что это нужно делать только в одном месте, в одном шаблоне, а не через потенциально тысячи статических страниц.
Анатомия динамического запроса
В этом разделе представлен пошаговый обзор «динамического» цикла HTTP-запроса и ответа, основываясь на том, что мы рассмотрели в последней статье, с гораздо более подробной информацией. Чтобы не отдаляться от практики, мы будем использовать контекст веб-сайта менеджера спортивной команды, где тренер может выбрать имя своей команды и размер команды в HTML-форме и вернуться к предлагаемому «лучшему составу» для своей следующей игры.
На приведённой ниже диаграмме показаны основные элементы веб-сайта «team coach», а также пронумерованные ярлыки для последовательности операций, когда тренер обращается к списку «лучших команд». Частями сайта, которые делают его динамичным, являются веб-приложение (так мы будем ссылаться на серверный код, обрабатывающий HTTP-запросы и возвращающие HTTP-ответы), база данных, которая содержит информацию об игроках, командах, тренерах и их отношениях, и HTML-шаблоны.
После того, как тренер отправит форму с именем команды и количеством игроков, последовательность операций будет следующей:
Выполнение другой работы
Задача веб-приложения — получать HTTP-запросы и возвращать HTTP-ответы. Хотя взаимодействие с базой данных для получения или обновления информации является очень распространённой задачей, код может делать другие вещи одновременно или вообще не взаимодействовать с базой данных.
Хорошим примером дополнительной задачи, которую может выполнять веб-приложение, является отправка электронной почты пользователям для подтверждения их регистрации на сайте. Сайт также может выполнять протоколирование или другие операции.
Возвращение чего-то другого, кроме HTML
Серверный код сайта может возвращать не только HTML-фрагменты и файлы в ответе. Он может динамически создавать и возвращать другие типы файлов (текст, PDF, CSV и т. д.) или даже данные (JSON, XML и т. д.).
Идея вернуть данные в веб-браузер, чтобы он мог динамически обновлять свой собственный контент (AJAX) существует довольно давно. Совсем недавно «Одностраничные приложения» стали популярными, где весь сайт написан с одним HTML-файлом, который динамически обновляется по мере необходимости. Веб-сайты, созданные с использованием приложений такого рода, переносят большие вычислительные затраты с сервера на веб-браузер и приводят к тому, что веб-сайты, ведут себя больше как нативные приложения (очень отзывчивые и т. д.).
Веб-фреймворки упрощают веб-программирование на стороне сервера
Веб-фреймворки на стороне сервера делают написание кода для обработки описанных выше операций намного проще.
Одной из наиболее важных операций, которые они выполняют, является предоставление простых механизмов для сопоставления URL-адресов для разных ресурсов/страниц с конкретными функциями обработчика. Это упрощает сохранение кода, связанного с каждым типом ресурса, отдельно от остального. Это также имеет преимущества с точки зрения обслуживания, поскольку вы можете изменить URL-адрес, используемый для доставки определённой функции в одном месте, без необходимости изменять функцию обработчика.
Веб-фреймворк также упрощает функцию просмотра для получения информации из базы данных. Структура наших данных определяется в моделях, которые являются классами Python, которые определяют поля, которые должны храниться в основной базе данных. Если у нас есть модель с именем Team с полем «team_type», мы можем использовать простой синтаксис запроса, чтобы получить все команды, имеющие определённый тип.
В приведённом ниже примере представлен список всех команд, у которых есть точный (с учётом регистра) team_type «junior» («младший») — обратите внимание на формат: имя поля ( team_type ), за которым следует двойной знак подчёркивания, а затем тип соответствия для использования (в этом случае exact («точное»)). Существует много других типов соответствия, и мы можем объединить их. Мы также можем контролировать порядок и количество возвращаемых результатов.
Очевидно, что веб-фреймворки могут помочь вам в решении многих других задач. В следующей статье мы обсудим намного больше преимуществ и некоторые популярные варианты веб-фреймворков.
Резюме
На этом этапе вы должны хорошо ознакомиться с операциями, которые должен выполнять серверный код, и знать некоторые способы, с помощью которых веб-фреймворк на стороне сервера может сделать это проще.
В следующем модуле мы поможем вам выбрать лучший веб-фреймворк для вашего первого сайта.
Грамотная клиент-серверная архитектура: как правильно проектировать и разрабатывать web API
Авторизуйтесь
Грамотная клиент-серверная архитектура: как правильно проектировать и разрабатывать web API
Рассказывает Владимир, веб-разработчик Noveo
Большинству разработчиков сайтов, веб-сервисов и мобильных приложений рано или поздно приходится иметь дело с клиент-серверной архитектурой, а именно разрабатывать web API или интегрироваться с ним. Чтобы не изобретать каждый раз что-то новое, важно выработать относительно универсальный подход к проектированию web API, основываясь на опыте разработки подобных систем. Предлагаем вашему вниманию объединенный цикл статей, посвящённых этому вопросу.
Приближение первое: Действующие лица
В один прекрасный момент, в процессе создания очередного веб-сервиса, я решил собрать все свои знания и размышления на тему проектирования web API для обслуживания нужд клиентских приложений и оформить их в виде статьи или серии статей. Разумеется, мой опыт не претендует на абсолют, и конструктивная критика и дополнения более чем приветствуются.
Чтиво получилось больше философское, нежели техническое, но и для любителей технической части здесь будет над чем поразмыслить. Сомневаюсь, что скажу в этой статье что-то принципиально новое, то, о чем вы никогда не слышали, не читали и о чем не думали сами. Просто попытаюсь уложить все в единую систему, в первую очередь в своей собственной голове, а это уже дорогого стоит. Тем не менее, буду рад, если мои измышления будут вам полезны в вашей практике. Итак, поехали.
Клиент и сервер
Сервером в данном случае мы считаем абстрактную машину в сети, способную получить HTTP-запрос, обработать его и вернуть корректный ответ. В контексте данной статьи совершенно не важны его физическая суть и внутренняя архитектура, будь то студенческий ноутбук или огромный кластер из промышленных серверов, разбросанных по всему миру. Нам в той же мере совершенно неважно, что у него под капотом, кто встречает запрос у дверей, Apache или Nginx, какой неведомый зверь, PHP, Python или Ruby выполняет его обработку и формирует ответ, какое хранилище данных используется: Postgresql, MySQL или MongoDB. Главное, чтобы сервер отвечал главному правилу — услышать, понять и простить ответить.
Клиентом тоже может быть все, что угодно, что способно сформировать и отправить HTTP-запрос. До определенного момента в этой статье нам также не особо будут интересны цели, которые ставит перед собой клиент, отправляя этот запрос, как и то, что он будет делать с ответом. Клиентом может быть JavaScript-сценарий, работающий в браузере, мобильное приложение, злой (или не очень) демон, запущенный на сервере, или слишком поумневший холодильник (уже есть и такие).
По большей части мы будем говорить о способе общения между выше перечисленными двумя, таком способе, чтобы они друг друга понимали, и ни у одного не оставалось вопросов.
Философия REST
REST (Representational state transfer) изначально был задуман как простой и однозначный интерфейс для управления данными, предполагавший всего несколько базовых операций с непосредственным сетевым хранилищем (сервером): извлечение данных (GET), сохранение (POST), изменение (PUT/PATCH) и удаление (DELETE). Разумеется, этот перечень всегда сопровождался такими опциями, как обработка ошибок в запросе (корректно ли составлен запрос), разграничение доступа к данным (вдруг этого вам знать не следует) и валидация входящих данных (вдруг вы написали ерунду), в общем, всеми возможными проверками, которые сервер выполняет перед тем, как выполнить желание клиента.
Помимо этого REST имеет ряд архитектурных принципов, перечень которых можно найти в любой другой статье о REST. Пробежимся по ним кратко, чтобы они были под рукой, и не пришлось никуда уходить:
Независимость сервера от клиента — серверы и клиенты могут быть мгновенно заменены другими независимо друг от друга, так как интерфейс между ними не меняется. Сервер не хранит состояний клиента.
Уникальность адресов ресурсов — каждая единица данных (любой степени вложенности) имеет свой собственный уникальный URL, который, по сути, целиком является однозначным идентификатором ресурса.
Пример: GET /api/v1/users/25/name
Независимость формата хранения данных от формата их передачи — сервер может поддерживать несколько различных форматов для передачи одних и тех же данных (JSON, XML и т.д.), но хранит данные в своем внутреннем формате, независимо от поддерживаемых.
Присутствие в ответе всех необходимых метаданных — помимо самих данных сервер должен возвращать детали обработки запроса, например, сообщения об ошибках, различные свойства ресурса, необходимые для дальнейшей работы с ним, например, общее число записей в коллекции для правильного отображения постраничной навигации. Мы еще пройдемся по разновидностям ресурсов.
Чего нам не хватает
Классический REST подразумевает работу клиента с сервером как с плоским хранилищем данных, при этом ничего не говорится о связанности и взаимозависимости данных между собой. Все это по умолчанию целиком ложится на плечи клиентского приложения. Однако современные предметные области, для которых разрабатываются системы управления данными, будь то социальные сервисы или системы интернет-маркетинга, подразумевают сложную взаимосвязь между сущностями, хранящимися в базе данных. Поддержка этих связей, т.е. целостности данных, находится в зоне ответственности серверной стороны, в то время, как клиент является только интерфейсом для доступа к этим данным. Так чего же нам не хватает в REST?
Вызовы функций
Чтобы не менять данные и связи между ними вручную, мы просто вызываем у ресурса функцию и «скармливаем» ей в качестве аргумента необходимые данные. Эта операция не подходит под стандарты REST, для нее не существует особого глагола, что заставляет нас, разработчиков, выкручиваться кто во что горазд.
Самый простой пример – авторизация пользователя. Мы вызываем функцию login, передаем ей в качестве аргумента объект, содержащий учетные данные, и в ответ получаем ключ доступа. Что творится с данными на серверной стороне – нас не волнует.
Еще вариант – создание и разрыв связей между данными. Например, добавление пользователя в группу. Вызываем у сущности группа функцию addUser, в качестве параметра передаем объект пользователь, получаем результат.
А еще бывают операции, которые вообще не связаны напрямую с сохранением данных как таковых, например, рассылка уведомлений, подтверждение или отклонение каких-либо операций (завершение отчетного периода etc).
В одной из следующих статей я постараюсь классифицировать эти операции и предложить варианты возможных запросов и ответов, основываясь на том, с какими из них мне приходилось сталкиваться на практике.
Множественные операции
Часто бывает так, и разработчики клиентов поймут, о чем я, что клиентскому приложению удобнее создавать/изменять/удалять/ сразу несколько однородных объектов одним запросом, и по каждому объекту возможен свой вердикт серверной стороны. Тут есть как минимум несколько вариантов: либо все изменения выполнены, либо они выполнены частично (для части объектов), либо произошла ошибка. Ну и стратегий тоже несколько: применять изменения только в случае успеха для всех, либо применять частично, либо откатываться в случае любой ошибки, а это уже тянет на полноценный механизм транзакций.
Для web API, стремящегося к идеалу, тоже хотелось бы как-то привести подобные операции в систему. Постараюсь сделать это в одном из продолжений.
Статистические запросы, агрегаторы, форматирование данных
Частенько бывает так, что на основе хранимых на сервере данных нам нужно получить статистическую выжимку или данные, отформатированные особым образом: например, для построения графика на стороне клиента. По сути это данные, генерируемые по требованию, в той или иной мере на лету, и доступные только для чтения, так что имеет смысл вынести их в отдельную категорию. Одной из отличительных особенностей статистических данных, на мой взгляд, является то, что они не имеют уникального ID.
Уверен, что это далеко не все, с чем можно столкнуться при разработке реальных приложений, и буду рад вашим дополнениям и коррективам.
Разновидности данных
Объекты
Ключевым типом данных в общении между клиентом и сервером выступает объект. По сути, объект – это перечень свойств и соответствующих им значений. Мы можем отправить объект на сервер в запросе и получить в результат запроса в виде объекта. При этом объект не обязательно будет реальной сущностью, хранящейся в базе данных, по крайней мере, в том виде, в котором он отправлен или получен. Например, учетные данные для авторизации передаются в виде объекта, но не являются самостоятельной сущностью. Даже хранимые в БД объекты склонны обрастать дополнительными свойствами внутрисистемного характера, например, датами создания и редактирования, различными системными метками и флагами. Свойства объектов могут быть как собственными скалярными значениями, так и содержать связанные объекты и коллекции объектов, которые не являются частью объекта. Часть свойств объектов может быть редактируемой, часть системной, доступной только для чтения, а часть может носить статистический характер и вычисляться на лету (например, количество лайков). Некоторые свойства объекта могут быть скрыты, в зависимости от прав пользователя.
Коллекции объектов
Говоря о коллекциях, мы подразумеваем разновидность серверного ресурса, позволяющую работать с перечнем однородных объектов, т.е. добавлять, удалять, изменять объекты и осуществлять выборку из них. Помимо этого коллекция теоретически может обладать собственными свойствами (например, максимальное число элементов на страницу) и функциями (тут я в замешательстве, но такое тоже было).
Скалярные значения
В одной из следующих статей я постараюсь классифицировать эти операции и предложить варианты возможных запросов и ответов, основываясь на том, с какими из них мне приходилось сталкиваться на практике.
Приближение второе: Правильный путь
В этом приближении я хотел бы отдельно поговорить о подходах к построению уникальных путей к ресурсам и методам вашего web API и о тех архитектурных особенностях приложения, которые влияют на внешний вид этого пути и его компоненты.
О чем стоит подумать, стоя на берегу
Версионность
Автономность компонентов
Формат обмена данными
Локализация и многоязычность
Внутренняя маршрутизация
Итак, мы добрались до корневого узла нашего API (или одного из его компонентов). Все дальнейшие маршруты будут проходить уже непосредственно внутри вашего серверного приложения, в соответствии с поддерживаемым им набором ресурсов.
Пути к коллекциям
Элементы коллекции
Уникальные объекты
Свойства объектов и коллекций
Коллекции связанных объектов
Функции объектов и коллекций
Надеюсь, что все более-менее уложилось в систему 🙂 В следующей части мы поговорим подробнее о запросах и ответах, их форматах, кодах статусов.
Приближение третье: Запросы и ответы
В предыдущих приближениях я рассказал о том, как пришла идея собрать и обобщить имеющийся опыт разработки web API. В первой части я постарался описать, с какими видами ресурсов и операций над ними мы имеем дело при проектировании web API. Во второй части были затронуты вопросы построения уникальных URL для обращения к этим ресурсам. А в этом приближении я попробую описать возможные варианты запросов и ответов.
Универсальный ответ
Мы уже проговаривали, что конкретный формат общения сервера с клиентом может быть любым на усмотрение разработчика. Для меня наиболее удобным и наглядным кажется формат JSON, хотя в реальном приложении может быть реализована поддержка нескольких форматов. Сейчас же сосредоточимся на структуре и необходимых атрибутах объекта ответа. Да, все данные, возвращаемые сервером, мы будем оборачивать в специальный контейнер — универсальный объект ответа, который будет содержать всю необходимую сервисную информацию для его дальнейшей обработки. Итак, что это за информация:
Success — маркер успешности выполнения запроса
Для того, чтобы при получении ответа от сервера сразу понять, увенчался ли запрос успехом, и передать его соответствующему обработчику, достаточно использовать маркер успешности «success». Самый простой ответ сервера, не содержащий никаких данных, будет выглядеть так:
Error — сведения об ошибке
В случае, если выполнение запроса завершилось неудачей — о причинах и разновидностях отрицательных ответов сервера поговорим чуть позже, — к ответу добавляется атрибут «error», содержащий в себе HTTP-код статуса и текст сообщения об ошибке. Прошу не путать с сообщениями об ошибках валидации данных для конкретных полей. Правильнее всего, на мой взгляд, возвращать код статуса и в заголовке ответа, но я встречал и другой подход — в заголовке всегда возвращать статус 200 (успех), а детали и возможные данные об ошибках передавать в теле ответа.
Data — данные, возвращаемые сервером
Большинство ответов сервера призваны возвращать данные. В зависимости от типа запроса и его успеха ожидаемый набор данных будет разным, тем не менее атрибут«data» будет присутствовать в подавляющем большинстве ответов.
Пример возвращаемых данных в случае успеха. В данном случае ответ содержит запрашиваемый объект user.
Пример возвращаемых данных в случае ошибки. В данном случае содержит имена полей и сообщения об ошибках валидации.
Pagination — сведения, необходимые для организации постраничной навигации
Помимо собственно данных, в ответах, возвращающих набор элементов коллекции, обязательно должна присутствовать информация о постраничной навигации (пагинации) по результатам запроса.
Минимальный набор значений для пагинации состоит из:
Некоторые разработчики web API также включают в пагинацию набор готовых ссылок на соседние страницы, а также первую, последнюю и текущую.
Работа над ошибками
Как уже упоминалось выше, не все запросы к web API завершаются успехом, но это тоже часть игры. Система информирования об ошибках является мощным инструментом, облегчающим работу клиента и направляющим клиентское приложение по правильному пути. Слово «ошибка» в этом контексте не совсем уместно. Здесь больше подойдёт слово исключение, так как на самом деле запрос успешно получен, проанализирован, и на него возвращается адекватный ответ, объясняющий, почему запрос не может быть выполнен.
Каковы же потенциальные причины получаемых исключений?
500 Internal server error — всё сломалось, но мы скоро починим
Это как раз тот случай, когда проблема произошла на стороне самого сервера, и клиентскому приложению остаётся только вздохнуть и уведомить пользователя о том, что сервер устал и прилёг отдохнуть. Например, утеряно соединение с базой данных или в коде завелся баг.
400 Bad request — а теперь у вас всё сломалось
Ответ прямо противоположный предыдущему. Возвращается в тех случаях, когда клиентское приложение отправляет запрос, который в принципе не может быть корректно обработан, не содержит обязательных параметров или имеет синтаксические ошибки. Обычно это лечится повторным прочтением документации к web API.
401 Unauthorized — незнакомец, назови себя
Для доступа к этому ресурсу требуется авторизация. Разумеется, наличие авторизации не гарантирует того, что ресурс станет доступным, но не авторизовавшись, вы точно этого не узнаете. Возникает, например, при попытке обратиться к закрытой части API или при истечении срока действия текущего токена.
403 Forbidden — вам сюда нельзя
Запрашиваемый ресурс существует, но у пользователя недостаточно прав на его просмотр или модификацию.
404 Not found — по этому адресу никто не живёт
Такой ответ возвращается, как правило, в трёх случаях: путь к ресурсу неверен (ошибочен), запрашиваемый ресурс был удалён и перестал существовать, права текущего пользователя не позволяют ему знать о существовании запрашиваемого ресурса. Например, пока просматривали список товаров, один из них внезапно вышел из моды и был удалён.
405 Method not allowed — нельзя такое делать
Эта разновидность исключения напрямую связана с использованным при запросе глаголом (GET, PUT, POST, DELETE), который, в свою очередь, свидетельствует о действии, которое мы пытаемся совершить с ресурсом. Если запрошенный ресурс не поддерживает указанное действие, сервер говорит об этом прямо.
422 Unprocessable entity — исправьте и пришлите снова
Одно из самых полезных исключений. Возвращается каждый раз, когда в данных запроса существуют логические ошибки. Под данными запроса мы подразумеваем либо набор параметров и соответствующих им значений, переданных методом GET, либо поля объекта, передаваемого в теле запроса методами POST, PUT и DELETE. Если данные не прошли валидацию, сервер в секции «data» возвращает отчет о том, какие именно параметры невалидны и почему.
Протокол HTTP поддерживает намного большее число различных статус-кодов на все случаи жизни, но на практике они используются редко и в контексте web API не несут практической пользы. На моей памяти мне не приходилось выходить за пределы вышеперечисленного списка исключений.
Запросы
Получение элементов коллекции
Одним из наиболее частотных запросов является запрос на получение элементов коллекции. Информационные ленты, списки товаров, различные информационные и статистические таблицы и многое другое клиентское приложение отображает посредством обращения к коллекционным ресурсам. Для осуществления этого запроса мы обращаемся к коллекции, используя метод GET и передавая в строке запроса дополнительные параметры. Как мы уже обозначили выше, в качестве ответа мы ожидаем получить массив однородных элементов коллекции и информацию, необходимую для пагинации — подгрузки продолжения списка или же конкретной его страницы. Содержимое выборки может быть особым способом ограничено и отсортировано с помощью передачи дополнительных параметров. О них и пойдёт речь далее.
Постраничная навигация
page — параметр указывает на то, какая страница должна быть отображена. Если этот параметр не передан, то отображается первая страница. Из первого же успешного ответа сервера будет ясно, сколько страниц имеет коллекция при текущих параметрах фильтрации. Если значение превышает максимальное число страниц, то разумнее всего вернуть ошибку 404 Not found.
perPage — указывает на желаемое число элементов на странице. Как правило, API имеет собственное значение по умолчанию, которое возвращает в качестве поля perPage в секции pagination, но в ряде случаев позволяет увеличивать это значение до разумных пределов, предоставив максимальное значение maxPerPage:
Сортировка результатов
Зачастую результаты выборки требуется упорядочить по возрастанию или убыванию значений определенных полей, которые поддерживают сравнительную (для числовых полей) или алфавитную (для строковых полей) сортировку. Например, нам нужно упорядочить список пользователей по имени или товары по цене. Помимо этого мы можем задать направление сортировки от A до Я или в обратном направлении, причём разное для разных полей.
sortBy — существует несколько подходов к передаче данных о сложной сортировке в GET параметрах. Здесь необходимо четко указать порядок сортировки и направление.
В некоторых API это предлагается сделать в виде строки:
В других вариантах предлагается использовать массив:
В целом оба варианта равносильны, так как передают одни и те же инструкции. На мой взгляд, вариант с массивом более универсален, но тут, как говорится, на вкус и цвет…
Простая фильтрация по значению
Для того, чтобы отфильтровать выборку по значению какого либо поля, в большинстве случаев достаточно передать в качестве фильтрующего параметра имя поля и требуемое значение. Например, мы хотим отфильтровать статьи по ID автора:
Усложнённые варианты фильтрации
Многие интерфейсы требуют более сложной системы фильтрации и поиска. Перечислю основные и наиболее часто встречаемые варианты фильтрации.
Фильтрация по верхней и нижней границе с использованием операторов сравнения from (больше или равно), higher (больше), to (меньше или равно), lower (меньше). Применяется к полям, значения которых поддаются ранжированию.
Фильтрация по нескольким возможным значениям из списка. Применяется к полям, набор возможных значений которых ограничен, например, фильтр по нескольким статусам:
Фильтрация по частичному совпадению строки. Применяется к полям, содержащим текстовые данные или данные, которые могут быть приравнены к текстовым, например, числовые артикулы товаров, номера телефонов и т. д.
Именованные фильтры
В некоторых случаях, когда определенные наборы фильтрационных параметров часто употребимы и подразумеваются системой как нечто целостное, особенно если затрагивают внутреннюю, зачастую сложную механику формирования выборки, целесообразно сгруппировать их в так называемые именованные фильтры. Достаточно передать в запросе имя фильтра, и система построит выборку автоматически.
Именованные фильтры могут также иметь свои параметры.
В этом подразделе я постарался рассказать о наиболее популярных вариантах и способах получения требуемой выборки. Скорее всего, в вашей практике наберется намного больше примеров и нюансов касаемо этой темы. Если у вас есть, чем дополнить мой материал, я буду только рад. Тем временем пост уже разросся до солидных масштабов, так что другие виды запросов мы разберём в следующем приближении.
За перевод материала выражаем благодарность международной IT-компании Noveo.