как устроено приложение андроид
Архитектура мобильного приложения Android: подробное руководство
Как правило, все эти компоненты приложения объявляются в едином файле — манифесте приложения. А сама операционная система Андроид, опираясь на «манифест», уже будет решать, как адаптировать ваше приложение под устройство пользователя.
При разработке Android-приложения приходится учитывать тот момент, что само приложение состоит из нескольких компонентов, а пользователь устройства может взаимодействовать сразу с несколькими телефонными программами одновременно, поэтому компоненты приложения должны уметь подстраиваться к разным ситуациям, процессам и задачам, которые может создать пользователь.
Правильная архитектура мобильного приложения Android глазами пользователя
Рассмотрим простой пример из жизни, когда пользователь решил поделиться собственным изображением в приложении какой-нибудь социальной сети.
После активации функции «Поделиться фотографией», приложение пользователя спрашивает о возможности включения камеры, чтобы сделать новое фото. В это самое время приложение отправляет запрос ОС Андроид о своем желании воспользоваться камерой. Но пользователь резко передумал и закрыл вкладку с соцсетью.
В это же самое время пользователь сможет открыть другие приложения, которые также будут заявлять о своем желании воспользоваться камерой устройства.
Пользователь возвращается в приложение соцсети и добавляет туда изображение из «Галереи».
вовремя инициировать запросы в операционную систему для выполнения каких-либо действий ;
уметь «ждать» своей очереди, если на какой-либо компонент устройства претендуют несколько приложений ;
уметь работать в фоновом режиме;
уметь работать в «свернутом» режиме, сохраняя все выполненные пользователем действия и ожидая продолжения работы;
При этом важно учитывать, что ресурсы мобильного телефона очень ограничены, поэтому ваше приложение не может занимать много ресурсов в режиме ожидания, да и в процессе работы. Потому что в этом случае операционная система в любой момент времени имеет возможность остановить или даже удалить некоторые процессы вашего приложения, чтобы ос вободить место для других приложений, которыми желает воспользоваться пользователь.
Именно поэтому разработке мобильных приложений свойственна компонентность. Это когда ваше приложение состоит из отдельных компонентов, которые могут функционировать по отдельности и не зависят друг от друга.
Архитектура Android-приложений: основные принципы
Можно постараться определить по каким основным принципам выстраивается архитектура Android-приложений, о них мы сегодня и поговорим.
Нужно разделять ответственность
Это один из самых важных принципов, который многие не соблюдают. Нужно разделять ответственность между классами. Например, не нужно разрабатывать весь код приложения в «Activity» или «Fragment», потому что эти классы должны отвечать лишь за логику взаимодействия интерфейса и ОС.
Нужно наладить управление интерфейсом пользователя из модели
Модель — это отдельный компонент, отвечающий за обрабатывание информации для приложения. Модели не имеют зависимости от компонентов приложения, поэтому на них никак не « переносятся » проблемы, связанные с компонентами приложения.
Важно соблюдать принцип управления интерфейсом из постоянной модели, потому что это несет в себе следующие свойства:
пользователи вашего приложения не потеряют свои данные, если операционная система Андроид удалит вашу программу, освобождая ресурсы системы;
ваш продукт будет работать даже в тех случаях, когда устройство не будет подключено к сети или связь с сетью буде т слабой и нестабильной.
Рекомендуемая архитектура Android-приложения
Вот как она выглядит:
Разбираем данную архитектуру Android-приложения:
«Activity» и «Fragment» являются частью слоя «View», а это значит, что они не должны иметь ничего общего с бизнес-логикой и/или сложными процессами в приложении. «View» всего лишь отвечает за взаимодействие между пользователем и приложением, анализируя и наблюдая за этим процессом.
«ViewModel» анализирует состояние «LifeCycles» и поддерживает согласование между компонентами в случаях изменений конфигураций Android-приложения, это также становится возможным благодаря извлечению данных из «Repository». «ViewModel» не взаимодействует напрямую с «View», а делает это при помощи сущности «LiveData».
«Repository» — это не какой-то специальный компонент Андроид. Это вполне обычный класс, чья основная задача — это выборка данных из разных источников, в том числе и баз данных, и различных веб-служб. Выбранные данные, этот класс преобразует таким образом, чтобы их мог наблюдать компонент «LiveData» и они были доступны компоненту «ViewModel».
«Room» — это библиотека, облегчающая процесс взаимодействия с базой данных «SQLite». Также в ее зоне ответственности лежит: запись шаблонов действий, проверка ошибок во время компиляции, прямое «общение» с «LiveData».
В данной архитектуре часть внимания уделяется именно «шаблону наблюдателя», который состоит из компонентов «LiveData» и «Lifecycle». Данный «шаблон» нужен в первую очередь для того, чтобы следить за всеми изменениями и обновлениями, происходящими в приложени и, и уведомлять о них компонент «Activity».
Важная рекомендация от разработчиков Android — это использовать систему «Dependency Injection» или шаблон «Service Locator» для консолидации архитектуры вашего приложения.
Подробнее о компонентах рекомендуемой архитектуры
Погружаться глубоко в описание каждого отдельного компонента рекомендуемой архитектуры для Android-приложений мы не будем, так как каждый отдельный компонент — это тема отдельной статьи или урока. Но общую идею, для чего они нужны, мы опишем. А общих знаний вам хватит, чтобы начать работу над этими компонентами.
Компонент «LiveData». По сути является компонентом, содержащим какие-то данные, которы е можно наблюдать со стороны. Данный компонент всегда знает, когда и какие данные изменяются в приложении и «наблюдает» ли кто-то за ним в данный момент времени и нужны ли обновления «наблюдателю».
Компонент «ViewModel». Это один из самых важных компонентов архитектуры, потому что именно этот компонент содержит в себе информацию о состоянии пользовательского интерфейса, также этот компонент сохраняет «целостность» интерфейса при изменении в конфигурации, например экран телефона был повернут. «ViewModel» связывает «LiveData» и «Repository». «LiveData», получая данные из «ViewModel», делает его доступным для наблюдения за ним.
Компонент «Room». Операционная система Андроид всегда поддерживала работу с базой данных SQLite, но такое взаимодействие имело ряд проблем. Например, приходилось создавать множество шаблонов для совместной работы, SQLite не могла сохранять простые Java-объекты, не проводилась проверка при компиляции и др. Но пришла библиотека «Room» и решила эти проблемы взаимодействия между Android и SQLite.
Заключение
Любая архитектура Android-приложения — это широкое поле для творчества, да и вообще программирование — это творчество, где любую проблему можно решить несколькими путями, в общем так, как видит решение конкретный «автор».
Описанную архитектуру Android-приложений рекомендует Google, при это она не является обязательной — об этом, кстати, сам Гугл и пишет. Поэтому не стоит боят ь ся экспериментировать и практиковать что-то новое.
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Как работает Android, часть 1
В этой серии статей я расскажу о внутреннем устройстве Android — о процессе загрузки, о содержимом файловой системы, о Binder и Android Runtime, о том, из чего состоят, как устанавливаются, запускаются, работают и взаимодействуют между собой приложения, об Android Framework, и о том, как в Android обеспечивается безопасность.
Немного фактов
Android — самая популярная операционная система и платформа для приложений, насчитывающая больше двух миллиардов активных пользователей. На ней работают совершенно разные устройства, от «интернета вещей» и умных часов до телевизоров, ноутбуков и автомобилей, но чаще всего Android используют на смартфонах и планшетах.
Android — свободный и открытый проект. Большинство исходного кода (который можно найти на https://source.android.com) распространяется под свободной лицензией Apache 2.0.
Компания Android Inc. была основана в 2003 году и в 2005 году куплена Google. Публичная бета Android вышла в 2007 году, а первая стабильная версия — в 2008, с тех пор мажорные релизы выходят примерно раз в год. Последняя на момент написания стабильная версия Android — 7.1.2 Nougat.
Android is Linux
По поводу такой формулировки было много споров, так что сразу поясню, что именно я имею в виду под этой фразой: Android основан на ядре Linux, но значительно отличается от большинства других Linux-систем.
Среди исходной команды разработчиков Android был Robert Love, один из самых известных разработчиков ядра Linux, да и сейчас компания Google остаётся одним из самых активных контрибьюторов в ядро, поэтому неудивительно, что Android построен на основе Linux.
Как и в других Linux-системах, ядро Linux обеспечивает такие низкоуровневые вещи, как управление памятью, защиту данных, поддержку мультипроцессности и многопоточности. Но — за несколькими исключениями — вы не найдёте в Android других привычных компонентов GNU/Linux-систем: здесь нет ничего от проекта GNU, не используется X.Org, ни даже systemd. Все эти компоненты заменены аналогами, более приспособленными для использования в условиях ограниченной памяти, низкой скорости процессора и минимального потребления энергии — таким образом, Android больше похож на встраиваемую (embedded) Linux-систему, чем на GNU/Linux.
Другая причина того, что в Android не используется софт от GNU — известная политика «no GPL in userspace»:
We are sometimes asked why Apache Software License 2.0 is the preferred license for Android. For userspace (that is, non-kernel) software, we do in fact prefer ASL 2.0 (and similar licenses like BSD, MIT, etc.) over other licenses such as LGPL.
Android is about freedom and choice. The purpose of Android is promote openness in the mobile world, and we don’t believe it’s possible to predict or dictate all the uses to which people will want to put our software. So, while we encourage everyone to make devices that are open and modifiable, we don’t believe it is our place to force them to do so. Using LGPL libraries would often force them to do just that.
Само ядро Linux в Android тоже немного модифицировано: было добавлено несколько небольших компонентов, в том числе ashmem (anonymous shared memory), Binder driver (часть большого и важного фреймворка Binder, о котором я расскажу ниже), wakelocks (управление спящим режимом) и low memory killer. Исходно они представляли собой патчи к ядру, но их код был довольно быстро добавлен назад в upstream-ядро. Тем не менее, вы не найдёте их в «обычном линуксе»: большинство других дистрибутивов отключают эти компоненты при сборке.
В качестве libc (стандартной библиотеки языка C) в Android используется не GNU C library (glibc), а собственная минималистичная реализация под названием bionic, оптимизированная для встраиваемых (embedded) систем — она значительно быстрее, меньше и менее требовательна к памяти, чем glibc, которая обросла множеством слоёв совместимости.
В Android есть оболочка командной строки (shell) и множество стандартных для Unix-подобных систем команд/программ. Во встраиваемых системах для этого обычно используется пакет Busybox, реализующий функциональность многих команд в одном исполняемом файле; в Android используется его аналог под названием Toybox. Как и в «обычных» дистрибутивах Linux (и в отличие от встраиваемых систем), основным способом взаимодействия с системой является графический интерфейс, а не командная строка. Тем не менее, «добраться» до командной строки очень просто — достаточно запустить приложение-эмулятор терминала. По умолчанию он обычно не установлен, но его легко, например, скачать из Play Store (Terminal Emulator for Android, Material Terminal, Termux). Во многих «продвинутых» дистрибутивах Android — таких, как LineageOS (бывший CyanogenMod) — эмулятор терминала предустановлен.
Второй вариант — подключиться к Android-устройству с компьютера через Android Debug Bridge (adb). Это очень похоже на подключение через SSH:
Из других знакомых компонентов в Android используются библиотека FreeType (для отображения текста), графические API OpenGL ES, EGL и Vulkan, а также легковесная СУБД SQLite.
Кроме того, раньше для реализации WebView использовался браузерный движок WebKit, но начиная с версии 7.0 вместо этого используется установленное приложение Chrome (или другое; список приложений, которым разрешено выступать в качестве WebView provider, конфигурируется на этапе компиляции системы). Внутри себя Chrome тоже использует основанный на WebKit движок Blink, но в отличие от системной библиотеки, Chrome обновляется через Play Store — таким образом, все приложения, использующие WebView, автоматически получают последние улучшения и исправления уязвимостей.
It’s all about apps
Как легко заметить, использование Android принципиально отличается от использования «обычного Linux» — вам не нужно открывать и закрывать приложения, вы просто переключаетесь между ними, как будто все приложения запущены всегда. Действительно, одна из уникальных особенностей Android — в том, что приложения не контролируют напрямую процесс, в котором они запущены. Давайте поговорим об этом подробнее.
Основная единица в Unix-подобных системах — процесс. И низкоуровневые системные сервисы, и отдельные команды в shell’е, и графические приложения — это процессы. В большинстве случаев процесс представляет собой чёрный ящик для остальной системы — другие компоненты системы не знают и не заботятся о его состоянии. Процесс начинает выполняться с вызова функции main() (на самом деле _start ), и дальше реализует какую-то свою логику, взаимодействуя с остальной системой через системные вызовы и простейшее межпроцессное общение (IPC).
Поскольку Android тоже Unix-подобен, всё это верно и для него, но в то время как низкоуровневые части — на уровне Unix — оперируют понятием процесса, на более высоком уровне — уровне Android Framework — основной единицей является приложение. Приложение — не чёрный ящик: оно состоит из отдельных компонентов, хорошо известных остальной системе.
In Android, however, we explicitly decided we were not going to have a main() function, because we needed to give the platform more control over how an app runs. In particular, we wanted to build a system where the user never needed to think about starting and stopping apps, but rather the system took care of this for them… so the system had to have some more information about what is going on inside of each app, and be able to launch apps in various well-defined ways whenever it is needed even if it currently isn’t running.
Для реализации такой системы нужно, чтобы приложения имели возможность общатся друг с другом и с системными сервисами — другими словами, нужен очень продвинутый и быстрый механизм IPC.
Этот механизм — Binder.
Binder
Binder — это платформа для быстрого, удобного и объектно-ориентированного межпроцессного взаимодействия.
Разработка Binder началась в Be Inc. (для BeOS), затем он был портирован на Linux и открыт. Основной разработчик Binder, Dianne Hackborn, была и остаётся одним из основных разработчиков Android. За время разработки Android Binder был полностью переписан.
Низкоуровневые части Binder оперируют в терминах объектов, которые могут пересылаться между процессами. При этом используется подсчёт ссылок (reference-counting) для автоматического освобождения неиспользуемых общих ресурсов и уведомление о завершении удалённого процесса (link-to-death) для освобождения ресурсов внутри процесса.
Для Java-кода в процессе-клиенте прокси-объект выглядит как обычный Java-объект, который реализует наш интерфейс, и этот код может просто вызывать его методы. При этом сгенерированная реализация прокси-объекта автоматически сериализует переданные аргументы, общается с процессом-сервисом через libbinder, десериализует переданный назад результат вызова и возвращает его из Java-метода.
Stub работает наоборот: он принимает входящие вызовы через libbinder, десериализует аргументы, вызывает абстрактную реализацию метода, сериализует возвращаемое значение и передаёт его процессу-клиенту. Соответственно, для реализации сервиса программисту достаточно реализовать абстрактные методы в унаследованном от Stub классе.
Такая реализация Binder на уровне Java позволяет большинству кода использовать прокси-объект, вообще не задумываясь о том, что его функциональность реализована в другом процессе. Для обеспечения полной прозрачности Binder поддерживает вложенные и рекурсивные межпроцессные вызовы. Более того, использование Binder со стороны клиента выглядит совершенно одинаково, независимо от того, расположена ли реализация используемого сервиса в том же или в отдельном процессе.
Для того, чтобы разные процессы могли «найти» сервисы друг друга, в Android есть специальный сервис ServiceManager, который хранит, регистрирует и выдаёт токены всех остальных сервисов.
Binder широко используется в Android для реализации системных сервисов (например, пакетного менеджера и буфера обмена), но детали этого скрыты от разработчика приложений высокоуровневыми классами в Android Framework, такими как Activity, Intent и Context. Приложения могут также использовать Binder для предоставления друг другу собственных сервисов — например, приложение Google Play Services вообще не имеет собственного графического интерфейса для пользователя, но предоставляет разработчикам других приложений возможность пользоваться сервисами Google Play.
Подробнее про Binder можно узнать по этим ссылкам:
В следующей статье я расскажу о некоторых идеях, на которых построены высокоуровневые части Android, о нескольких его предшественниках и о базовых механизмах обеспечения безопасности.
Архитектура Android-приложений. Часть I — истоки
В этой статье мы рассмотрим архитектуру Android-приложений.
Откровенно говоря, официальную статью Google по этой теме я считаю не очень полезной. Детально отвечая на вопрос «как», она совсем не объясняет «что» и «почему». Итак, вот моя версия, и, я надеюсь, она внесёт некоторую ясность. Да, кстати, я полностью одобряю чтение статей Google, поскольку они содержат полезную информацию, повторять которую я не собираюсь.
Архитектура ОС Android — немного истории
Как это часто бывает в IT, многие вещи не могут быть объяснены в отрыве от истории возникновения конкретного программного обеспечения. Вот почему мы должны обратиться к истокам ОС Android.
Разработка ОС Android была начата в 2003 молодой компанией Android Inc. В 2005 году эта компания была куплена Google. Я считаю, что главные особенности архитектуры Android были определены именно в этот период. Это заслуга не только Android Inc; архитектурные концепции и финансовые ресурсы Google оказали решающее влияние на архитектуру Android. Далее я приведу несколько примеров.
Если вы помните, 2003-2005 года были ознаменованы повышенным вниманием к AJAX приложениям. Я думаю, это оказало основополагающее влияние на архитектуру Android: во многих аспектах она ближе к архитектуре типичного AJAX приложения, нежели к десктопному GUI приложению, написанному на Java, C#, C++, VB и тп.
Не знаю, почему так произошло. Моя догадка — это придумал кто-то из Google в тот период, когда насыщенные интернет-приложения (Rich Internet Applications, RIA) в духе Google Docs или Gmail считались решением всех проблем. По-моему, эту идею нельзя назвать ни плохой, ни хорошей. Просто помните, что Android-приложения очень сильно отличаются от десктопных.
Влияние архитектурной философии Eclipse заметно в выборе принципа реализации GUI, который больше похоже на SWT, нежели на Swing.
В стандартах оформления кода Android присутствует «венгерская нотация», рождённая в стенах MS. Можно предположить, что тот, кто писал эти стандарты, ранее занимался разработкой под Windows.
Архитектурные уровни Android
Операционная система Android имеет три весьма различных и сильно отделённых друг от друга уровня:
Уровень Linux
Представьте себе, что вы — архитектор в молодой компании. Вы должны разработать ОС для нового типа устройств. Что вы будете делать?
Грубо говоря, у вас два пути: реализовывать собственные идеи, начав с нуля или же использовать существующую ОС и адаптировать её под свои устройства.
Реализация с нуля всегда звучит захватывающе для программистов. В эти моменты мы все верим в то, что в этот раз мы всё сделаем лучше, чем делают другие, и даже лучше, чем мы сами делали ранее.
Тем не менее, это не всегда практично. Например, использование ядра Linux заметно уменьшило стоимость разработки (возможно где-то и без того чрезмерно большую). Согласитесь, если кто-то решит создать нечто, напоминающее ядро Linux в его сегодняшнем состоянии, ему потребуется несколько миллионов долларов.
Если вы руководите Android Inc, то у вас по определению не может быть столько денег. Если вы руководите Google, то у вас такие деньги найдутся, но вы, скорее всего, подумаете дважды, прежде чем потратить их на создание собственной ОС. Так же вы потратите несколько лет, прежде чем достигните сегодняшнего состояния Linux; несколько лет задержки могут стать слишком большим опозданием при выходе на рынок.
В подобной ситуации компания Apple решила построить Mac OS на основе Free BSD. Android Inc приняла решение использовать Linux как основу для Android. Исходники как Free BSD, так и Linux, находятся в свободном доступе и предоставляют собой хорошую основу для любых разработок, будь то Apple или Google.
Но в то время запустить стандартный Linux на мобильном устройстве было невозможно (сейчас это уже не так). Устройства имели слишком мало оперативной и энергонезависимой памяти. Процессоры были значительно медленнее по сравнению с процессорами компьютеров, где обычно используется Linux. Как результат, разработчики Android решили минимизировать системные требования Linux.
Если рассматривать Linux на высоком уровне, то это комбинация ядра (без которого нельзя обойтись) и множества других, необязательных частей. Можно даже запустить одно ядро, без чего бы то ни было ещё. Так, Google вынуждена в любом случае использовать ядро Linux как часть ОС Android. Кроме того, были рассмотрены необязательные части и из них выбрано самое необходимое. Например, были добавлены сетевой фаервол IPTables и оболочка Ash. Любопытно, что добавили именно Ash, а не Bash, не смотря на то, что последний на порядок мощнее; вероятно, это решение было основано на том, что Ash менее требователен к ресурсам.
Разработчики Android модифицировали ядро Linux, добавив поддержку железа, используемого в мобильных устройствах и, чаще всего, недоступного на компьютерах.
Выбор Linux в качестве основы оказал огромное влияние на все аспекты ОС Android. Сборка Android, по сути, есть вариация процесса сборки Linux. Код Android находится под управлением git (инструмент, разработанный для управления кодом Linux). И так далее.
Пускай это всё и интересно, но вы, скорее всего, никогда не коснётесь всех этих специфических моментов до тех пор, пока ваша цель просто разработать приложения под Android. Исключение может составить разве что обзор файловой системы с помощью команд ash. Главное, что вы должны знать, разрабатывая приложения под Android — это уровень инфраструктуры приложения.
Вы можете спросить, как же быть, если необходимо разработать нативное приложение для Android? Google настоятельно не рекомендует делать этого. Технически, конечно, это возможно, но в дальнейшем у вас не будет возможности распространять это приложение нормальным способом. Так что подумайте дважды, прежде чем начать нативную разработку под Android, если конечно, вы не работает над Android Open Source Project (AOSP), т.е. собственно ОС Android.
Уровень инфраструктуры приложения
Несмотря на некоторое сходство Apple iOS и Android ОС, существуют значительные отличия между архитектурными решениями на инфраструктурном уровне обоих ОС.
Apple решила использовать Objective-C как язык программирования и среду выполнения приложения iOS. Objective-C выглядит более или менее естественным выбором для ОС, в основе которой лежит Free BSD. Можно рассматривать Objective-C как обычный C++ с кастомным препроцессором, который добавляет некоторые специфические лингвистические конструкции. Почему же нельзя использовать стандартный C++, на котором написана Free BSD? Мне кажется причина в том, что Apple старается всё делать в своём, «эппловском» стиле.
Основная идея в том, что приложения iOS написаны более или менее на том же языке, что и стоящая за ними ОС.
Android-приложения сильно отличаются в этом смысле. Они написаны на Java, а это совсем другая технология, нежели C++ (хотя синтаксис и унаследован от C++).
Почему это так? Почему, например, Android-приложения не написаны на C++? Со стороны Google я не нашёл никаких объяснений, поэтому могу поделиться лишь собственными соображениями.
Я думаю, основная причина состоит в необходимости одному и тому же приложению работать на различном аппаратном обеспечении. Эта проблема имеет место лишь для ОС Android; у ребят из Apple такой проблемы нет. iOS работает только на оборудовании собственного производства, и Apple полностью контролирует весь процесс. Для Android же всё наоборот: Google не контролирует производителей аппаратных средств. Например, ОС Android работает на процессорах с архитектурой x86, ARM и Atom (в комментах подсказывают, что x86 включает в себя Atom, и Android работает на x86, ARM, PPC и MIPS — примечание переводчика). На бинарном уровне эти архитектуры несовместимы.
Если бы архитекторы ОС Android выбрали тот же путь, что и архитекторы из Apple, разработчики приложений под Android были бы вынуждены распространять несколько версий одного и того же приложения одновременно. Это стало бы серьёзной проблемой, которая могла бы привести к краху всего проекта Android.
Для того, чтобы одно и то же приложение могло работать на разном аппаратном обеспечении, компания Google использовала контейнер-ориентированную архитектуру (container-based architecture). В такой архитектуре двоичный код выполняется программным контейнером и изолируется от деталей конкретного аппаратного обеспечения. Примеры всем знакомы — Java и C#. В обоих языках двоичный код не зависит от специфики аппаратного обеспечения и выполняется виртуальной машиной.
Конечно, есть и другой способ достигнуть независимости от аппаратного обеспечения на уровне двоичного кода. Как один из вариантов, можно использовать эмулятор аппаратного обеспечения, так же известный как QEMU. Он позволяет эмулировать, например, устройство с процессором ARM на платформе x86 и так далее. Google могла бы использовать C++ как язык для разработки приложений внутри эмуляторов. Действительно, Google использует такой подход в своих эмуляторах Android, которые построены на основе QEMU.
Очень хорошо, что они не пошли по такому пути, поскольку тогда кому-то пришлось бы запускать ОС на эмуляторе, требующем намного больше ресурсов, и, как итог, скорость работы снизилась бы. Для достижения наилучшего быстродействия эмуляция была оставлена только там, где этого нельзя было избежать, в нашем случае — в Android-приложениях.
Как бы то ни было, компания Google пришла к решению использовать Java как основной язык разработки приложений и среды их выполнения.
Я думаю, это было критически важное архитектурное решение, которое поставило Android в стороне от остальных мобильных ОС на основе Linux, представленных в настоящее время. Насколько мне известно, ни у одной из них нет совместимости двоичного кода на уровне приложений. Возьмём для примера MeeGo. Она использует C++ и фреймворк Qt; не смотря на то, что Qt кроссплатформенный, необходимость делать разные сборки для разных платформ не исчезает.
Выбрав Java, нужно было решить, какую виртуальную машину (JVM) использовать. Ввиду ограниченности ресурсов использование стандартной JVM было затруднено. Единственным возможным выбором было использование Java ME JVM, разработанной для мобильных устройств. Однако счастье Google было бы неполным без разработки собственной виртуальной машины, и появилась Dalvik VM.
Dalvik VM отличается от других виртуальных Java-машин следующим:
Также они добавили несколько пакетов с открытым кодом, не являющихся частью стандартного JDK: Bouncy Castle crypto API, HTTPClient с поддержкой разделения HTTP/HTTPS на стороне клиента.
Также Google добавила веб-браузер в уровень инфраструктуры приложения. Это не полноценный Google Chrome для мобильных устройств, но очень близок к нему, поскольку основан на том же движке WebKit и использует движок JavaScript V8 из Chrome. В конце концов, это крайне современный и высокотехнологичный браузер. Он может быть интегрирован в любые Android-приложения.
На сегодня это всё. В следующей статье мы сосредоточим внимание на архитектуре Android-приложений.
Апдейт от переводчика. В оригинале использовалась не совсем верная терминология. Спасибо всем тем, кто указал на эти ошибки.