Как определить что фигура параллелограмм
Параллелограмм
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны. Площадь параллелограмма равна произведению его основания (a) на высоту (h). Также можно найте его площадь через две стороны и угол и через диагонали.
Разновидностями параллелограмма (частные случаи) являются квадрат, прямоугольник и ромб.
Свойства параллелограмма
1. Противоположные стороны тождественны
Так как \( ABCD \) — параллелограмм, то справедливо следующее:
\( AD || BC \Rightarrow \angle 1 = \angle 2 \) как лежащие накрест.
\( AB || CD \Rightarrow \angle3 = \angle 4 \) как лежащие накрест.
Следовательно, \( \triangle ABC = \triangle ADC \) (по второму признаку: \( \angle 1 = \angle 2, \angle 3 = \angle 4 \) и \( AC \) — общая).
2. Противоположные углы тождественны
3. Диагонали разделены пополам точкой пересечения
Таким образом видно, что \( \triangle AOB = \triangle COD \) по второму признаку равенства треугольников (два угла и сторона между ними). То есть, \( BO = OD \) (напротив углов \( \angle 2 \) и \( \angle 1 \) ) и \( AO = OC \) (напротив углов \( \angle 3 \) и \( \angle 4 \) соответственно).
Признаки параллелограмма
Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.
Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?». То есть, как узнать, что заданная фигура это параллелограмм.
1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны
\( AB = CD \) ; \( AB || CD \Rightarrow ABCD \) — параллелограмм.
Первый признак верен.
2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны
Второй признак верен.
3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны
Третий признак верен.
4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам
\( AO = OC \) ; \( BO = OD \Rightarrow \) параллелограмм.
Как доказать, что фигура – параллелограмм? Какие его признаки?
Содержание:
Параллелограммом – 4-угольник, где противоположные стороны попарно параллельные, одинаковые по длине, а диагонали в точке пересечения делятся на равные отрезки. Изучим признаки параллелограмма по двум, четырём сторонам, внутренним углам, центру симметрии.
Что такое параллелограмм, свойства фигуры
Особенность высоты геометрической фигуры – отрезка, опущенного из любой точки многоугольника на противоположную ей сторону: отсекает от фигуры равнобедренный треугольник.
Свойства биссектрис – отрезков, делящих углы пополам:
У 4-угольника противоположные углы равны, а сумма прилегающих к одному отрезку составляет 180°.
Как доказать, что фигура параллелограмм
Признаки
Дан 4-угольник, где AB=CD, BC=AD. Доказать, что AB∥CD, BC∥AD.
Проведём диагональ BD. В итоге получим пару одинаковых треугольников, исходя из условий задачи и общего отрезка BD.
Отсюда вытекают равенства: ∠1 = ∠4, ∠2 = ∠3 – подобные треугольники имеют одинаковые по величине углы, образованные подобными сторонами. Значит AB∥CD и BC∥AD (из свойства: если накрест расположенные углы равны, значит прямые будут параллельными).
В данном четырёхугольнике BC=AD, BC∥AD. Нужно доказать параллельность AB и CD для подтверждения, что это параллелограмм.
Исходя из условий, понимаем, что BCD и ABD – подобные треугольники. Из условия задачи: BC = AD, BD – общая для обоих, значит, ∠2 = ∠3 – следствие того, что накрест лежащие углы подобные. Из равенства 3-угольников: ∠1 = ∠4 получается, что AB параллельна CD.
Признаки параллелограмма по диагоналям с доказательством
Четырёхугольник обладает и прочими особенностями, рассмотрим одну на примере задачи: докажите признак параллелограмма по точке пересечения диагоналей.
Треугольник AOD равен BOC, потому что AD=BC – лежащие напротив стороны четырёхугольника. ∠1=∠2, ∠3=∠4 – они лежат накрест и параллельных прямых. Если треугольники подобные, значит: OC=OA, OB=OD.
Прочие способы как доказать параллелограмм
Получается, треугольник OAF равен OCE, потому что у них стороны AO = OC. Углы, расположенные у общей вершины O, также равны, ведь они вертикальные. ∠1=∠2 – следствие равности накрест лежащих при параллельных прямых углов. Как результат: OF=OE.
Если у четырёхугольника есть точка, которая обладает описанным свойством, её называют центром симметрии этой геометрической фигуры. Для рассматриваемого многоугольника центром симметрии является точка O, разделяющая диагонали на подобные отрезки.
При повороте геометрической фигуры вокруг центра симметрии на 180° она будет совмещена с предыдущим местоположением, ведь противоположные точки поменяются местами относительно оси симметрии.
Для проверки качества усвоения материала самостоятельно сформулируйте признаки параллелограмма без доказательств.
Что такое параллелограмм: определение, свойства, признаки
В данной публикации мы рассмотрим определение, свойства и признаки (с рисунками) одной из основных геометрических фигур – параллелограмма.
Определение параллелограмма
Параллелограмм – это четырехугольник, противоположные стороны которого попарно параллельны.
Обычно параллелограмм записывается путем перечисления четырех его вершин, например, ABCD. А пары параллельных сторон, чаще всего, обозначаются маленькими латинскими буквами, в нашем случае – a и b.
Частные случаи параллелограмма: квадрат, ромб и прямоугольник.
Свойства параллелограмма
Свойство 1
Противолежащие (или противоположные) стороны параллелограмма равны.
Свойство 2
Противолежащие углы параллелограмма равны.
Свойство 3
Сумма углов параллелограмма, прилежащих к одной стороне, равняется 180°.
Для рисунка выше: α + β = 180°.
Свойство 4
Любая из двух диагоналей параллелограмма делит его на два равных треугольника.
Свойство 5
Диагонали параллелограмма в точке пересечения делятся пополам.
Свойство 6
Точка пересечения диагоналей параллелограмма (также называется центром симметрии) одновременно является точкой пересечения его средних линий.
Средняя линия четырехугольника – это отрезок, который соединяет середины его противоположных сторон.
В данном случае средние лини – это отрезки FM и EN.
Свойство 7
Угол между двумя высотами в параллелограмме равен его острому углу.
Свойство 8
Биссектрисы углов параллелограмма, прилежащих к одной стороне, взаимно перпендикулярны (т.е. расположены под углом 90° друг к другу).
Свойство 9
Биссектрисы двух противолежащих углов параллелограмма параллельны.
Углы ABC и ADC противолежащие. Их биссектрисы параллельны, т.е. BR || DP.
Свойство 10: тождество параллелограмма
Сумма квадратов диагоналей параллелограмма равняется удвоенной сумме квадратов его смежных сторон.
Признаки параллелограмма
Четырехугольник ABCD без самопересечений является параллелограммом, если для него справедливо одно из утверждений ниже:
Параллелограмм. Свойства и признаки параллелограмма
Определение параллелограмма
Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.
Свойства параллелограмма
1. Противоположные стороны параллелограмма попарно равны
2. Противоположные углы параллелограмма попарно равны
3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов
4. Сумма всех углов равна 360°
5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
6. Точка пересечения диагоналей является центром симметрии параллелограмма
7. Диагонали параллелограмма и стороны
связаны следующим соотношением:
8. Биссектриса отсекает от параллелограмма равнобедренный треугольник
Признаки параллелограмма
Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:
1. Противоположные стороны попарно равны:
2. Противоположные углы попарно равны:
3. Диагонали пересекаются и в точке пересечения делятся пополам
4. Противоположные стороны равны и параллельны:
5.
Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:
Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.
Параллелограмм: свойства и признаки
Определение параллелограмма
Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:
Частные случаи параллелограмма: ромб, прямоугольник, квадрат.
Диагонали — отрезки, которые соединяют противоположные вершины.
Свойства диагоналей параллелограмма:
Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.
Свойства биссектрисы параллелограмма:
Как найти площадь параллелограмма:
Периметр параллелограмма — сумма длины и ширины, умноженная на два.
P = 2 × (a + b), где a — ширина, b — высота.
У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!
Свойства параллелограмма
Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.
Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:
А сейчас докажем теорему, которая основана на первых двух свойствах.
Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.
В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.
Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:
Теорема доказана. Наше предположение верно.
Признаки параллелограмма
Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.
Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Докажем 1 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.
Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.
Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:
Шаг 3. Из равенства треугольников также следует:
Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.
Вот так быстро мы доказали первый признак.
Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Докажем 2 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:
Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.
Шаг 3. Из равенства треугольников следует:
А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.
Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.
Доказали второй признак.
Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Докажем 3 признак параллелограмма:
Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:
Шаг 2. Из равенства треугольников следует, что CD = AB.
Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).
Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.
Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.