К чему стремится график гиперболы 9 букв
Близится к гиперболе
Последняя бука буква «а»
Ответ на вопрос «Близится к гиперболе «, 9 (девять) букв:
асимптота
Альтернативные вопросы в кроссвордах для слова асимптота
Определение слова асимптота в словарях
Толковый словарь живого великорусского языка, Даль Владимир Значение слова в словаре Толковый словарь живого великорусского языка, Даль Владимир
ж. геометр. прямая черта, вечно близящаяся к кривой (гиперболе), но никогда с нею не сходящаяся. Пример, для объяснения этого: если какое-либо число все делить пополам, то оно будет умаляться до бесконечности, но никогда не сделается нулем.
Википедия Значение слова в словаре Википедия
асимптоты для кривой в пространстве. Спираль бесконечно приближается к прямой
Примеры употребления слова асимптота в литературе.
Если бы истина устанавливалась всегда впереди и мы действительно двигались бы по асимптоте к некоторой абсолютной истине, никогда ее не достигая, а имея все время лишь относительные истины, то, как вы сами понимаете, ни в одной точке этого движения никто никогда никакую истину вообще не мог бы высказать.
Когда вид вымирал, соответствующая ему линия сходилась к горизонтальной асимптоте и пропадала.
Божеское совершенство есть асимптота жизни человеческой, к которому она всегда стремится и приближается и которое может быть достигнуто ею только в бесконечности.
Источник: библиотека Максима Мошкова
Гипербола. График функции и свойства.
теория по математике 📈 функции
Гипербола имеет две ветви и может располагаться в 1 и 3 координатных четвертях, либо во 2 и 4. Это зависит от знака числа k. Рассмотрим данную кривую на рисунке, где показано ее расположение в зависимости от знака k.
График функции симметричен относительно начала координат (0;0). Поэтому функцию еще называют – обратная пропорциональность.
Построение графика функции
Для построения графика функции необходимо подбирать несколько положительных и несколько отрицательных значений переменной х, затем подставлять их в заданную функцию для вычисления значений у. После этого по найденным координатам построить точки и соединить их плавной линией. Рассмотрим построение графиков на примерах.
Для этого построим две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число 10 на них делилось
х | 1 | 2 | 4 | 5 | 10 |
у |
х | –1 | –2 | –4 | –5 | –10 |
у |
Теперь делим на эти числа 10, получим значения у:
х | 1 | 2 | 4 | 5 | 10 |
у | 10 | 5 | 2,5 | 2 | 1 |
х | –1 | –2 | –4 | –5 | –10 |
у | –10 | –5 | –2,5 | –2 | –1 |
Выполняем построение точек, они будут располагаться в первой и третьей координатных четвертях, так как число k положительное.
Для этого построим также две таблицы для положительных и отрицательных значений х. Подбирать желательно такие значения х, чтобы число минус 5 на них делилось. Выполняем деление и получаем значения у. При делении обращаем внимание на знаки, чтобы не допускать ошибок.
х | 1 | 2 | 5 | 10 |
у | –5 | –2,5 | –1 | –0,5 |
х | –1 | –2 | –5 | –10 |
у | 5 | 2,5 | 1 | 0,5 |
Теперь отмечаем точки во 2 и 4 координатных четвертях (число k отрицательное) и соединяем их для получения ветвей гиперболы.
Установите соответствие между графиками функций и формулами, которые их задают.
1) y = x²
Для решения данной задачи необходимо знать вид графиков функций, а именно:
y = x² — парабола, в общем виде это y = ax²+bx+c, но в нашем случае b = c = 0, а а = 1
x/2 — прямая, в общем виде график прямой имеет вид y = ax + b, в нашем случае b = 0, а = 1/2
y = 2/x — гипербола, в общем виде график функции y = a/x + b, в данном примере b = 0, a = 2
Парабола изображена на рисунке А, гипербола на рисунке Б, а прямая — В.
pазбирался: Даниил Романович | обсудить разбор | оценить
Установите соответствие между функциями и их графиками.
В данной ситуации можно воспользоваться двумя подходами — можно руководствоваться общими соображениями, а можно просто решить задачу подстановкой. Я рекомендую решать задачу общими соображениями, а проверять подстановкой.
Таким образом можно сразу определить, что первое уравнение соответствует графику под номером 2.
Второе правило, которым я пользуюсь, звучит так:
Следовательно, функция Б слабее прижимается к осям и ей соответствует график 3, а функции В соответствует график 1, так как она сильнее прижимается к осям.
pазбирался: Даниил Романович | обсудить разбор | оценить
Гипербола: определение, функция, формула, примеры построения
В данной публикации мы рассмотрим, что такое гипербола, приведем формулу, с помощью которой задается ее функция, а также на практических примерах разберем алгоритм построения данного вида графика.
Определение и функция гиперболы
Гипербола – это график функции обратной пропорциональности, которая в общем виде задается следующей формулой:
Пример 1
Дана функция y = 4 /x. Построим ее график.
Решение
Так как k > 0, следовательно, гипербола будет находиться в I и III координатных четвертях.
Чтобы построить график, сначала нужно составить таблицу соответствия значений x и y. То есть мы берем конкретное значение x, подставляем его в формулу функции и получаем y.