что возбуждается при действии раздражителя

Глава X. Физиология нервно-мышечной системы

Понятие о возбудимых тканях. Возбуждение, возбудимость

Все живые ткани и клетки под влиянием раздражителей переходят из состояния физиологического покоя в состояние активности. Степень активного состояния живой ткани может быть различной.

Наиболее яркая ответная реакция на действие раздражителей наблюдается со стороны нервной и мышечной ткани, менее выражена она в железистой и соединительной ткани.

Основными физиологическими свойствами нервной и мышечной ткани являются: возбудимость, проводимость, рефрактерность, лабильность. Специфическим свойством мышечной ткани является сократимость.

Проводимостью называют способность живой ткани проводить волны возбуждения, точнее, электрические токи, которые получили название биопотенциалов.

Все живые ткани в зависимости от особенностей обменных процессов могут возбуждаться в единицу времени определенное количество раз. Указанную способность тканей Н. Е. Введенский назвал лабильностью или функциональной подвижностью.

Таким образом, все живые ткани обладают рядом общих физиологических свойств. Универсальным свойством всего живого следует считать возбудимость. Различают две формы возбуждения: местное нераспространяющееся и импульсное, волнообразно распространяющееся.

В процессе эволюции возбуждение стало распространяющимся, импульсным. Биологическое значение распространяющегося возбуждения заключается в том, что оно обеспечивает функциональное отправление раздражаемого образования, активируя его в целом.

По биологическому признаку раздражители могут быть адекватными и неадекватными. Адекватные раздражители воздействуют на возбудимые системы в естественных условиях существования организма. Так, адекватным раздражителем для фоторецепторов сетчатки глаза являются световые лучи (кванты света). Неадекватные раздражители в естественных условиях существования организма не воздействуют на возбудимые структуры. Однако при достаточной силе и продолжительности могут вызвать ответную реакцию со стороны возбудимых тканей.

В условиях физиологического эксперимента в качестве раздражителя чаще всего используют электрический ток. Электрический ток легко дозировать, и он является адекватным раздражителем для возбудимых тканей, так как функциональная их активность всегда сопровождается электрическими явлениями.

По своей силе раздражители могут быть подпороговыми, пороговыми, надпороговыми.

Определение хронаксии возбудимых тканей получило широкое распространение не только в эксперименте, но и в физиологии спорта, в клинике. В частности, путем измерения хронаксии мышцы невропатолог может установить наличие повреждения двигательного нерва. Необходимо отметить, что раздражитель может быть достаточно сильным, иметь пороговую длительность, но низкую скорость нарастания во времени до пороговой величины, возбуждение в этом случае не возникает. Приспособление возбудимой ткани к медленно нарастающему раздражителю получило название аккомодации. Аккомодация обусловлена тем, что за время нарастания силы раздражителя в ткани успевают развиться активные изменения, повышающие порог раздражения и препятствующие развитию возбуждения. Таким образом, скорость нарастания раздражения во времени, или градиент раздражения, имеет существенное значение для возникновения возбуждения.

Закон градиента раздражения. Реакция живого образования на раздражитель зависит от градиента раздражения, т. е. от срочности или крутизны нарастания раздражителя во времени: чем выше градиент раздражения, тем сильнее (до определенных пределов) ответная реакция возбудимого образования.

Следовательно законы раздражения отражают сложные взаимоотношения между раздражителем и возбудимой структурой при их взаимодействии. Для возникновения возбуждения раздражитель должен иметь пороговую силу, обладать пороговой длительностью и иметь определенную скорость нарастания во времени.

Биоэлектрические явления в живых тканях

Потенциал покоя. Между наружной поверхностью клетки и ее внутренним содержимым (протоплазмой) можно обнаружить разность потенциалов около 60-90 мВ. При этом поверхность клетки заряжена электроположительно по отношению к содержимому (протоплазме). Эту разность потенциалов называют потенциалом покоя, или мембранным потенциалом. Зарегистрировать мембранный потенциал можно с помощью микроэлектродов, предназначенных для внутриклеточного отведения биопотенциалов (рис. 52).

Потенциал действия. При нанесении на участок нервного или мышечного волокна раздражителя достаточной силы и длительности возникает возбуждение, наиболее важным проявлением которого является быстрое колебание мембранного потенциала. При этом возбужденный участок заряжается электроотрицательно по отношению к невозбужденному.

Потенциал действия можно зарегистрировать двумя способами: с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), и с помощью микроэлектрода, введенного внутрь протоплазмы (внутриклеточное отведение).

При внеклеточном способе регистрации ток действия имеет двухфазную структуру. Если приложить электроды осциллографа к неповрежденной поверхности нервного или мышечного волокна, разность потенциалов не обнаружится, так как неповрежденная поверхность волокна заряжена электроположительно. При нанесении раздражения к области С возникает потенциал действия. Волна электроотрицательности в первую очередь достигнет области электрода А, что сопровождается перемещением луча на экране осциллографа. В следующий момент волна электроотрицательности покидает область электрода А и распространяется в межэлектродной области. Разность потенциалов между электродами А и В не регистрируется и луч на экране осциллографа возвращается в исходное положение. При достижении волной электроотрицательности области электрода В между электродами вновь возникнет разность потенциалов, но противоположного знака. В результате появления разности потенциалов обратного знака луч на экране осциллографа отклонится вниз от нулевого уровня. Однако возбуждение продолжает распространяться и волна электроотрицательности покидает область электрода В. Разность потенциалов между электродами А и В исчезает, луч на экране осциллографа вновь возвращается в исходное положение (рис. 53).

Регистрация потенциала действия с помощью электронных усилителей и микроэлектродов позволила выяснить достаточно сложную его структуру (рис. 54).

Происхождение потенциала покоя и потенциала действия. Предложено много теорий, объясняющих происхождение биопотенциалов. Наиболее полно экспериментально обоснована мембранная теория, предложенная немецким исследователем Бернштейном (1902, 1912). В современный период эта теория модифицирована и экспериментально разработана Ходжкиным, Хаксли, Катцем (1949-1952).

Установлено, что в основе биоэлектрических явлений лежит неравномерное распределение (асимметрия) ионов в цитоплазме клетки и окружающей ее среде. Так, протоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Кроме того, в состав цитоплазмы клетки входят органические анионы (крупномолекулярные соединения, несущие отрицательный заряд), которые отсутствуют во внеклеточной среде.

Сторонники мембранной теории основной причиной ионной асимметрии считают наличие клеточной мембраны со специфическими свойствами.

В состоянии относительного физиологического покоя мембрана обладает повышенной проницаемостью для ионов калия, проницаемость же ее для ионов натрия резко снижена.

Механизм возникновения потенциала действия значительно сложнее. Основная роль в возникновении токов действия принадлежит ионам натрия. При действии раздражителя пороговой силы проницаемость мембраны клетки для ионов натрия возрастает в 500 раз и превышает проницаемость для ионов калия в 10-20 раз. В связи с этим натрий лавинообразно устремляется в клетку, что приводит к перезарядке клеточной мембраны. Наружная поверхность заряжается отрицательно по отношению к внутренней. Происходит деполяризация клеточной мембраны, сопровождающаяся реверсией мембранного потенциала. Под реверсией мембранного потенциала понимают то количество милливольт (мВ), на которое потенциал действия превышает потенциал покоя. Восстановление исходного уровня мембранного потенциала (реполяризация) осуществляется за счет резкого снижения натриевой проницаемости (инактивация) и активного переноса ионов натрия из цитоплазмы клетки в окружающую среду.

Доказательства натриевой гипотезы потенциала действия также были получены Ходжкиным. Действительно, если потенциал действия имеет натриевую природу, то, варьируя концентрацию ионов натрия, можно изменить величину потенциала действия. Оказалось, что при замене 2 /3 морской воды, которая является нормальной окружающей средой для гигантского аксона кальмара, на изотонический раствор декстрозы, т. е. при изменении концентрации натрия в окружающей среде на 2 /3, потенциал действия уменьшается наполовину.

Вслед за фазой экзальтации возникает стадия субнормальной возбудимости, совпадающая с положительным следовым потенциалом. Возбудимость в эту фазу незначительно снижена по сравнению с исходным ее уровнем.

Учение Н. Е. Введенского о функциональной подвижности (лабильности)

Мерой лабильности, по Н. Е. Введенскому, является то наибольшее количество волн возбуждения, которое возбудимая ткань может воспроизводить в 1 с в точном соответствии с ритмом наносимых раздражений без явлений трансформации (переделки) ритма.

Лабильность может быть измерена косвенным путем по величине хронаксии возбудимых тканей. Чем короче хронаксия, тем выше лабильность. Определение лабильности весьма важно в физиологии труда и спорта.

Источник

Возбуждение и его механизмы

В основе всех физиологических реакций лежит способность живых клеток реагировать на раздражитель. Раздражитель (стимул) – любое изменение внешней или внутренней среды, которое действует на клетку или многоклеточную систему (ткань, организм).

1. Раздражители

По природе раздражители подразделяют на:

По биологическому значению раздражители подразделяют на:

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение “порог возбуждения” имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

2. Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:

В организме существует 3 типа возбудимых клеток:

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждение при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

3. Возбудимая клетка в состоянии покоя

4. Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2.2)

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока. ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако, состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением, т.к. это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т.е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением, поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

5. Устройство клеточной мембраны возбудимой клетки

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Na + /K + помпа (откачивает из клетки Na + в обмен на К + ), Ca 2+ помпа (откачивает из клетки Ca 2+ ), Cl – помпа (откачивает из клетки Cl – ).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрация ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы обладают следующими свойствами:

Селективные каналы обладают следующими свойствами:

Избирательная проницаемость селективного канала обеспечивается селективным фильтром, который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, т.н. активационные ворота и инативационные ворота, изменяя свою конформацию могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 2.3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

6. Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется, главным образом, благодаря выходу К + из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

где R – универсальная газовая постоянная,

Т – температура (по Кельвину),

[К + ]нар – концентрация ионов К + снаружи клетки,

[К + ]вн – концентрация ионов К + внутри клетки.

ПП, как правило, очень близок к ЕК, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

7. Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз:

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na + /K + помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

8. Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки.

Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.

1. Законы проведения возбуждения по нервным волокнам

2. Особенности проведения местного и распространяющегося возбуждения

Локальный ответ (местное возбуждение)

Потенциал действия (распространяющееся возбуждение)

3. Миелиновые и безмиелиновые нервные волокна

Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты (шванновские клетки) сначала прикасаются к аксону, а затем окутывают его (рис 4.1 А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис 4.1 В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.

Безмиелиновые волокна. Миелинизация других волокон заканчивается на ранних стадиях эмбрионального развития. В леммоцит погружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки.

Источник

ЛЕКЦИЯ № 2. Физиология возбудимых тканей

Основным свойством любой ткани является раздражимость – неспецифическая общебиологическая реакция, которая сопровождается увеличением обмена веществ, повышением температуры, выделение СО2.

Раздражители – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

Различают две группы раздражителей:

1) естественные (нервные импульсы, возникающие в нервных клетках и различных рецепторах);

Классификация раздражителей по биологическому принципу:

1) адекватные, которые при минимальных энергетических затратах вызывают возбуждение ткани в естественных условиях существования организма;

2) неадекватные, которые вызывают в тканях возбуждение при достаточной силе и продолжительном воздействии.

Рекомендуемые файлы

К общим физиологическим свойствам тканей относятся:

1) возбудимость – процесс временной деполяризации мембраны клеток со специфической ответной реакцией при котором мышечная ткань сокращается, железистая – выделяет секрет, нервная – проводит нервный импульс.

Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым;

2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани;

3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.

2. Законы раздражения возбудимых тканей

Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

1) закон силы раздражения;

2) закон длительности раздражения;

3) закон градиента раздражения.

Закон силы раздражения устанавливает зависимость ответной реакции от силы раздражителя. Эта зависимость неодинакова для отдельных клеток и для целой ткани. Для одиночных клеток зависимость называется «все или ничего». Характер ответной реакции зависит от достаточной пороговой величины раздражителя. При воздействии подпороговой величиной раздражения ответной реакции возникать не будет (ничего). При достижении раздражения пороговой величины возникает ответная реакция, она будет одинакова при действии пороговой и любой сверхпороговой величины раздражителя (часть закона – все).

Для совокупности клеток (для ткани) эта зависимость иная, ответная реакция ткани прямо пропорциональна до определенного предела силе наносимого раздражения. Увеличение ответной реакции связано с тем, что увеличивается количество структур, вовлекающихся в ответную реакцию.

Закон длительности раздражений. Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега—Вейса—Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

Закон градиента раздражения. Градиент – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. Аккомодация – это приспособление ткани к медленно нарастающему по силе раздражителю. Это явление связано с быстрым развитием инактивации Na-каналов. Постепенно происходит увеличение порога раздражения, и раздражитель всегда остается подпороговым, т. е. порог раздражения увеличивается.

Законы раздражения возбудимых тканей объясняют зависимость ответной реакции от параметров раздражителя и обеспечивают адаптацию организмов к факторам внешней и внутренней среды.

3. Понятие о состоянии покоя и активности возбудимых тканей

О состоянии покоя в возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный уровень метаболизма, нет видимого функционального отправления ткани. Состояние активности наблюдается в том случае, когда на ткань действует раздражитель, при этом изменяется уровень метаболизма, и наблюдается функциональное отправление ткани.

Основные формы активного состояния возбудимой ткани – возбуждение и торможение.

Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани, и наблюдается функциональное отправление ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя, т. е. нет порога раздражения, имеет градуальный характер;

в) отсутствует рефрактерность, т. е. в процессе возникновения возбуждения возбудимость ткани возрастает;

г) затухает в пространстве и распространяется на короткие расстояния, т. е. характерен декремент;

2) импульсное, распространяющееся возбуждение. Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера (возникает скачкообразно);

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Торможение – активный процесс, возникает при действии раздражителей на ткань, проявляется в подавлении другого возбуждения. Следовательно, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответ.

Выделяют два типа торможения:

1) первичное, для возникновения которого необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения;

2) вторичное, которое не требует специальных тормозных структур. Оно возникает в результате изменения функциональной активности обычных возбудимых структур.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выражены. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

4. Физико-химические механизмы возникновения потенциала покоя

Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин:

1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией;

2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.

За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. Движение ионов продолжается до тех пор, пока не уравновесится разность потенциалов на мембране, т. е. не наступит электрохимическое равновесие. Момент равновесия зависит от двух сил:

2) силы электростатического взаимодействия.

Значение электрохимического равновесия:

1) поддержание ионной асимметрии;

2) поддержание величины мембранного потенциала на постоянном уровне.

В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.

Для поддержания ионной асимметрии электрохимического равновесия недостаточно. В клетке имеется другой механизм – натрий-калиевый насос. Натрий-калиевый насос – механизм обеспечения активного транспорта ионов. В клеточной мембране имеется система переносчиков, каждый из которых связывает три иона Na, которые находятся внутри клетки, и выводит их наружу. С наружной стороны переносчик связывается с двумя ионами K, находящимися вне клетки, и переносит их в цитоплазму. Энергия берется при расщеплении АТФ. Работа натрий-калиевого насоса обеспечивает:

1) высокую концентрацию ионов К внутри клетки, т. е. постоянную величину потенциала покоя;

2) низкую концентрацию ионов Na внутри клетки, т. е. сохраняет нормальную осмолярность и объем клетки, создает базу для генерации потенциала действия;

3) стабильный концетрационный градиент ионов Na, способствуя транспорту аминокислот и сахаров.

5. Физико-химические механизмы возникновения потенциала действия

Потенциал действия – это сдвиг мембранного потенциала (спайк), возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Компоненты потенциала действия:

2) высоковольтный пиковый потенциал (спайк);

3) следовые колебания:

а) отрицательный следовой потенциал;

б) положительный следовой потенциал.

Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.

Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.

Высоковольтный пиковый потенциал (спайк).

Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:

1) восходящей части – фазы деполяризации;

2) нисходящей части – фазы реполяризации.

Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.

В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *