что внутри литий ионного аккумулятора
Как работает литиевая батарея?
Обновленная статья от: 10.11.2020
Литий-ионные аккумуляторы – универсальный тип элементов питания. Они используются в смартфонах, фонариках, портативной технике, специнструменте, источниках
бесперебойного питания. Литий-ионные батареи обеспечивают автономное питание складской и клининговой техники, электромобилей, гольфкаров, инвалидных колясок, гироскутеров, самокатов, велосипедов на электротяге и многих других устройств.
Источники питания на основе лития отличаются высокой энергоемкостью при относительно малых размерах и массе. Дополнительными их преимуществами выступают:
Литиевый аккумулятор – устройство и принцип работы
В структуре Li-ion аккумулятора есть катод из производных лития на алюминиевой фольге и графитовый анод на фольге из меди. В качестве производных лития используются различные соединения: LiCoO2, LiMn2O4, LiFePO4, LiNiO2, LiMnRON, LiC6, LiMnO2, Li4Ti5O12 и др. Между катодом и анодом находится пористый сепаратор, пропитанный электролитом с функциями проводника. Заряд переносят ионы лития, легко встраиваемые в кристаллическую решетку пористого углерода и вызывающие соответствующую химическую реакцию.
Конструкция из электродов и находящегося между ними сепаратора сворачивается в виде рулона и помещается в герметичную оболочку из стали, алюминия или полимерного материала. При этом электроды подсоединяются к токосъемникам. В итоге получаются Li-ion элементы цилиндрической или призматической формы – в зависимости от принципа сворачивания фольги. Самый распространенный типоразмер Li-ion аккумуляторов в форме цилиндра – 18650.
Как работает Li-ion аккумулятор
Принцип действия литий-ионного аккумулятора заключается в создании необходимых условий для перемещения ионов лития между катодом и анодом:
Задачи и функции BMS платы
Слабым местом Li-ion аккумуляторов считается их чувствительность к перезарядам и глубоким разрядам. Чтобы напряжение элементов автоматически поддерживалось в безопасном диапазоне, батарея оснащается BMS платой контроля и защиты. Она автоматически размыкает выходные ключи – отключает АКБ от нагрузки при критическом разряде и от сети при полном заряде. БМС плата оберегает элементы питания и от короткого замыкания. В таких ситуациях напряжение на элементах питания резко просаживается, и мгновенно срабатывает защита от глубокого разряда. Тем самым модуль защиты продлевает срок службы АКБ.
Основой BMS платы выступает микросхема. В ней есть полевые транзисторы, используемые для раздельного управления защитой на протяжении заряда и разряда ячеек. Плата защиты следит, чтобы напряжение на каждой ячейке не превышало 4,2 В и не опускалось ниже 2,3 В. Также в схеме обычно присутствует датчик, замеряющий уменьшение напряжения на полевых транзисторах. Функции измерительного шунта выполняет переходное сопротивление транзисторов. В ряде плат дополнительно используется детектор токовых перегрузок.
Как работает контроллер заряда в литиевой батарее
Контроллер заряда – важная составляющая зарядного устройства, которая обеспечивает правильный режим подзарядки. Для литиевых элементов это режим CC/CV – вначале осуществляется зарядка при неизменном токе, а затем – при стабильном напряжении.
Контроллер ограничивает зарядный ток и контролирует объем энергии, поступающей на ячейки в единицу времени. Избыточную энергию он рассеивает в виде тепла. При достижении порога срабатывания 4,2 В контроллер переключается в режим стабилизации напряжения и плавно уменьшает ток заряда.
Режимы работы литиевых АКБ
Есть 2 основных режима использования литиевых АКБ:
Литий-ионные батареи успешно используются и в буферном, и в циклическом режиме. Если эксплуатация АКБ подразумевает жесткие условия и частые глубокие разряды, лучше всего с такими задачами справляются литий-железо-фосфатные батареи (LiFePO4). В частности, они используются для питания лодочных электромоторов, складской и клининговой техники, е-байков и других видов электротранспорта.
Старение и деградация литиевых АКБ
В результате циклического заряда-разряда литиевые аккумуляторы постепенно «стареют» – ионы лития не всегда возвращаются в свое исходное положение, состояние катода меняется, в системе накапливаются продукты окисления. В итоге аккумуляторная батарея медленно и безвозвратно утрачивает часть своей емкости.
Считается, что при потере 30% исходной емкости жизненный цикл батареи завершается. При потере емкости на 50% батарея подлежит утилизации. Рабочий ресурс батареи определяется как количество полных циклов заряда-разряда до тех пор, когда емкость АКБ снизится на 20%. В среднем ресурс Li-ion аккумуляторов составляет 1000 циклов, у моделей вида LiFePO4 – более 2000, а у литий-титанатных – более 20 000.
Рекомендации по использованию
Чтобы продлить срок службы Li-ion батарей, нужно:
Используйте литиевые АКБ правильно, и они долго будут радовать вас отличными рабочими характеристиками.
Устройство, эксплуатация и характеристики литий─ионных аккумуляторов
В современных мобильных телефонах, ноутбуках, планшетах используются литий─ионные аккумуляторы. Постепенно они вытеснили щелочные аккумуляторы с рынка портативной электроники. Раньше во всех этих устройствах использовались никель─кадмиевые и никель─металлгидридные аккумуляторные батареи. Но их времена прошли, поскольку Li─Ion батареи имеют лучшие характеристики. Правда, они могут заменить щелочные не по всем параметрам. Например, для них недостижимы токи, которые могут отдавать никель─кадмиевые АКБ. Для питания смартфонов и планшетов это некритично. Однако в области портативного электроинструмента, который потребляет большой ток, щелочные аккумуляторы по-прежнему в ходу. Тем менее, работы по разработке аккумуляторов с высокими токами разряда без кадмия продолжаются. Сегодня мы поговорим о литий─ионных аккумуляторных батареях, их устройстве, эксплуатации и перспективах развития.
Как появились литий─ионные батареи?
Самые первые аккумуляторные элементы с анодом из лития были выпущены в семидесятых годах прошлого столетия. У них была высокая удельная энергоёмкость, что сразу сделало их востребованными. Специалисты давно стремились разработать источник на основе щелочного металла, который имеет высокую активность. Благодаря этому было достигнуто высокое напряжение этого типа батарей и удельная энергия. При этом сама разработка конструкции таких элементов была выполнена довольно быстро, а вот их практическое использование вызвало сложности. С ними удалось справиться только в 90-е годы прошлого века.
Это случилось после ряда несчастных случаев. В момент разговора ток, потребляемый от аккумулятора, выходил на максимум и началась вентиляция с выбросом пламени. В результате произошло много случаев получения пользователями ожогов лица. Поэтому учёным пришлось дорабатывать конструкцию литий─ионных аккумуляторов.
Металлический литий крайне нестабилен, особенно проявляется при зарядке и разрядке. Поэтому исследователи стали создавать аккумуляторную батарею литиевого типа без использования лития. Стали использоваться ионы этого щелочного металла. Отсюда и пошло их название.
Литий─ионные батареи имеют меньшую удельную энергию, чем литиевые аккумуляторы.
Но они безопасны при соблюдении норм заряда и разряда.
Вернуться к содержанию
Реакции, происходящие в Li─Ion аккумуляторе
Рывком в направлении внедрения литий─ионных аккумуляторных батарей в бытовую электронику стала разработка АКБ, у которых минусовой электрод был выполнен из углеродного материала. Кристаллическая решётка углерода очень хорошо подошла в качестве матрицы для интеркаляции ионов лития. Чтобы увеличить напряжение аккумулятора, положительный электрод был выполнен из оксида кобальта. Потенциал литерованного оксида кобальта составляет примерно 4 вольта.
Величина рабочего напряжения большинства литий─ионных аккумуляторов составляет 3 вольта и более. В процессе разряда на минусовом электроде происходит деинтеркаляция лития из углерода и его интеркаляция в оксид кобальта плюсового электрода. В процесс зарядки процессы происходят наоборот. Получается, что металлического лития в системе нет, а работают его ионы, которые перемещаются с одного электрода на другой, создавая электрический ток.
Вернуться к содержанию
Реакции на отрицательном электроде
Все современные коммерческие модели литий─ионных аккумуляторов имеют минусовой электрод из углеродосодержащего материала. От природы этого материала, а также вещества электролита во многом зависит сложный процесс интеркаляции лития в углерод. Матрица углерод на аноде имеет слоистую структуру. Структура может быть упорядоченной (натуральный или синтетический графит) или частично упорядоченной (кокс, сажа и т. п.).
При интеркаляции ионы лития раздвигают слои углерода, внедряясь между них. Получаются различные интеркалаты. При интеркаляции и деинтеркаляции удельный объем матрицы углерода меняется несущественно. В отрицательный электрод, помимо углеродного материала, могут использоваться серебро, олово и их сплавы. Также пробуют использовать композитные материалы с кремнием, сульфидами олова, соединениями кобальта и т. п.
Реакции на положительном электроде
В первичных литиевых элементах (батарейках) для изготовления плюсового электрода часто используются самые разные материалы. В аккумуляторах этого сделать не получается и выбор материала ограничен. Поэтому плюсовой электрод Li─Ion аккумулятора выполняется из литированного оксида никеля или кобальта. Также могут применяться литий─марганцевые шпинели.
Сегодня ведутся исследования материалов из смешанных фосфатов или оксидов для катода. Как удалось доказать специалистам, такие материалы улучшают электрические характеристики литий─ионных АКБ. Также разрабатываются способы нанесения оксидов на поверхность катода.
Реакции, протекающие в литий─ионном аккумуляторе при заряде, можно описать следующими уравнениями:
С + xLi + + xe — → CLix
В процессе разряда реакции идут в обратном направлении.
На рисунке ниже схематично показаны процессы, протекающие в литий─ионном аккумуляторе при заряде и разряде.
Реакции, протекающие в Li-Ion аккумуляторе
Устройство литий─ионных аккумуляторов
По своему исполнению Li─Ion аккумуляторы выполняются в цилиндрическом и призматическом исполнении. Цилиндрическая конструкция представляет рулон электродов с сепараторным материалом для разделения электродов. Этот рулон помещён в корпус из алюминия или стали. С ним соединён минусовой электрод.
Положительный контакт выводится в виде контактной площадки на торец аккумулятора.
Цилиндрический литий─ионный аккумулятор
Li─Ion аккумуляторы призматической конструкции делаются с помощью укладывания пластин прямоугольной формы друг на друга. Такие батареи дают возможность сделать упаковку более плотной. Сложность заключается в поддержке сжимающего усилия на электродах. Есть призматические АКБ с рулонной сборкой электродов, скручиваемых в спираль.
Призматический литий─ионный аккумулятор
Кроме того, для увеличения безопасности эксплуатации в Li-Ion аккумуляторах в обязательном порядке используется электронная плата. Её назначение – это контроль за процессами заряда и разряда, исключение перегрева и короткого замыкания.
Сейчас выпускается много призматических литий─ионных аккумуляторов. Они находят применение в смартфонах и планшетах. Конструкция призматических батарей часто может отличаться у различных производителей, поскольку не имеет единой унификации. Электроды противоположной полярности разделяются сепаратором. Для его производства используется пористый полипропилен.
Конструкция Li-Ion и прочих разновидностей литиевых АКБ всегда выполняется герметичной. Это обязательное требование, поскольку вытекания электролита не допустимо. Если он вытечет, то электроника будет повреждена. Кроме того, герметичное исполнение не допускает попадания внутрь АКБ воды и кислорода. Если они попадут внутрь, то в результате реакции с электролитом и электродами разрушат аккумулятор. Производство комплектующих для литиевых аккумуляторов и их сборка находится в специальных сухих боксах в атмосфере аргона. При этом используются сложные приёмы сваривания, герметизации и т. п.
Ао – активная масса отрицательного электрода;
Ап — активная масса положительного электрода.
Такой баланс не допускает образование лития (чистого металла) и исключает возгорание.
Вернуться к содержанию
Параметры Li-Ion аккумуляторов
Выпускаемые сегодня литий─ионные аккумуляторы имеют высокую удельную энергоёмкость и рабочее напряжение. Последнее в большинстве случаев составляет от 3,5 до 3,7 вольта. Энергоёмкость составляет от 100 до 180 ватт-час на килограмм или от 250 до 400 на литр. Некоторое время назад производители не могли выпустить АКБ с ёмкостью выше нескольких ампер-час. Сейчас проблемы, сдерживающие развитие в этом направлении, устранены. Так, что в продаже стали встречаться аккумуляторы литиевого типа с ёмкостью в несколько сотен ампер-час.
Саморазряд этого типа батарей равен 4─6 процента в течение первого месяца. Далее он уменьшается и в год составляет до процентов. Это значительно меньше, чем у никель─кадмиевых и никель─металлогидридных батарей. Срок службы примерно 400─500 циклов заряд-разряд.
Теперь поговорим об особенностях эксплуатации литий─ионных аккумуляторов.
Вернуться к содержанию
Эксплуатация литий─ионных батарей
Зарядка Li─Ion аккумуляторов
Заряд литий─ионных АКБ обычно комбинированный. Сначала они заряжаются при постоянном токе величиной 0,2─1С пока не наберут напряжение 4,1─4,2 вольта. А затем зарядка ведётся при постоянном напряжении. Первая ступень продолжается примерно около часа, а вторая около двух. Чтобы зарядить аккумулятор быстрее, используется импульсный режим. Первоначально выпускались Li─Ion аккумуляторы с графитом и для них устанавливалось ограничение напряжения 4,1 вольта на одну банку. Дело в том, что при более высоком напряжении в элементе начинались побочные реакции, сокращающие срок эксплуатации этих аккумуляторов.
Постепенно эти минусы удалось устранить за счёт легирования графита различными добавками. Современные литий─ионные элементы без проблем заряжают до 4,2 вольта. Погрешность составляет 0,05 вольта на элемент. Существуют группы Li─Ion аккумуляторных батарей для военной и промышленной сферы, где требуется повышенная надёжность и длительный срок службы. Для таких АКБ выдерживают максимальное напряжение на элемент 3,90 вольта. У них несколько ниже энергетическая плотность, но увеличенный срок службы.
Зависимость тока заряда и напряжения Li─Ion аккумулятора при заряде
На графике ниже представлены этапы зарядки Li─Ion батареи.
Этапы зарядки литий─ионного аккумулятора
Что касается струйной подзарядки, то для литий─ионных батарей она неприменима. Это объясняется тем, что этот тип АКБ не может при перезарядке поглощать избыточную энергию. Струйная подзарядка может привести к переходу части ионов лития в металлическое состояние (валентность 0).
А непродолжительный заряд хорошо компенсирует саморазряд и потери электрической энергии. Зарядка на третьем этапе может делаться каждые 500 часов. Как правило, выполняется при снижении напряжения АКБ до 4,05 вольта на одном элементе. Заряд ведётся до поднятия напряжения до 4,2 вольта.
Стоит отметить слабую стойкость литий─ионных аккумуляторов к перезаряду. В результате подачи лишнего заряда на углеродной матрице (минусовой электрод) может начаться осаждение металлического лития. Он имеет очень высокую химическую активность и взаимодействует с электролитом. В результате на катоде начинается выделение кислорода, что грозит ростом давления в корпусе и разгерметизацией. Поэтому если вы заряжаете Li─Ion элемент в обход контроллера, не допускайте подъёма напряжения при заряде выше, чем рекомендует производитель батареи. Если постоянно перезаряжать аккумулятор, срок его службы сокращается.
Безопасности Li-Ion АКБ производители уделяют серьёзное внимание. Заряд прекращается при увеличении напряжения выше допустимого уровня. Также установлен механизм выключения заряда при увеличении температуры батареи выше 90 Цельсия. Некоторые современные модели батарей имеют в своей конструкции выключатель механического типа. Он срабатывает при росте давления внутри корпуса АКБ. Механизм контроля напряжения электронной платы отключает банку от внешнего мира по минимальному и максимальному напряжению.
Существуют литий─ионные батареи без защиты. Это модели, содержащие в своём составе марганец. Этот элемент при перезаряде способствует торможению металлизации лития и выделению кислорода. Поэтому в таких аккумуляторах защита становится не нужна.
Хранение и разрядные характеристики литий─ионных АКБ
Аккумуляторы литиевого типа хранятся достаточно хорошо и саморазряд в год составляет всего 10─20% в зависимости от условий хранения. Но при этом деградация элементов батареи продолжается даже, если она не используется. Вообще, все электрические параметры литий─ионного аккумулятора могут отличаться для каждого конкретного экземпляра.
К примеру, напряжение при разряде меняется в зависимости от степени зарядки, тока, температуры окружающей среды и т. п. На срок эксплуатации АКБ оказывают влияние токи и режимы цикла разряд-заряд, температура. Один из главных недостатков Li-Ion батарей ─ это чувствительность к режиму заряд-разряд, из-за чего в них и предусматривается много разных видов защит.
На графиках ниже представлены разрядные характеристики литий─ионных аккумуляторов. На них рассмотрена зависимость напряжения от тока разряда и температуры окружающей среды.
Разрядные характеристики литий-ионного аккумулятора при разных разрядных токах
Разрядные характеристики литий-ионного аккумулятора при различных температурах
Безопасность
В целом к настоящему времени проблема защиты литий─ионных аккумуляторов уже решена. Электронная защита держит под контролем процесс заряда и разряда. К тому же постоянно дорабатывается материал катода, в том числе, в направлении термической стабильности.
Li-Ion аккумуляторы имеют встроенную защиту от внутреннего короткого замыкания. Некоторые категории АКБ также оснащают защитой от внешнего короткого замыкания. Внутренняя защита реализована в виде двухслойного сепаратора. Один слой выполнен из полипропилена, а второй из аналога полиэтилена. Если в результате появления литиевых дендритов происходит короткое замыкание, то этот второй слой из-за разогрева оплавляется. В результате он становится непроницаемым, что предотвращает дальнейший рост дендритов лития к положительному электроду.
Вернуться к содержанию
Защита литий─ионных батарей
Выше мы несколько раз упоминали о защите Li─Ion аккумуляторов. Давайте, суммируем всю информацию.
В аккумуляторных батареях литиевого типа применяется полевой транзистор для размыкания цепи, когда напряжение банки возрастает до 4,3 вольта. Термическая защита разъединяет цепь при нагреве АКБ выше 90 градусов Цельсия. Ещё в литий─ионных батареях можно встретить предохранитель, срабатывающий при увеличении давления в корпусе до 1034 кПа. Также устанавливаются схемы, предохраняющие элемент от глубокого разряда. Их назначение – разорвать цепь при снижении напряжения элемента до 2,5 вольта.
Как функционирует защита АКБ?
Схема защиты литий─ионной аккумуляторной батареи при включённом телефоне имеет сопротивление 0,05─0,1 Ом. Это два ключа, которые соединены последовательно. Первый предназначен для срабатывания на верхнем, а второй ─ на нижнем значении напряжения АКБ. Сопротивление увеличивает в 2 раза внутреннее сопротивление АКБ. Аккумулятор отдаёт максимальный ток при низком внутреннем сопротивлении. Схема защиты сделана, как препятствие для бесконтрольного роста тока (как зарядки, так и разрядки) аккумулятора.
Также схема защиты может быть реализована с помощью химических добавок. Для этого используется марганец. В таких АКБ вместо схемы защиты ставится только предохранитель. И всё это не сказывается на безопасности. Марганец не даёт аккумулятору перегреться и воспламениться. В результате отказа от электронной схемы снижается цена литий─ионных батарей, но это порождает другую проблему. Такую АКБ пользователь может заряжать «неродной» зарядкой. И в этом случае может случиться так, что ЗУ не остановит процесс при полной зарядке. Тогда без схемы пойдёт перезаряд и выход аккумулятора из строя. Такие вещи заканчиваются вздутием корпуса.
Вернуться к содержанию
Деградация Li─Ion аккумуляторов
Из-за чего происходит деградация Li-Ion аккумуляторов и какие факторы приводят к снижению ёмкости? Это:
Зависимость ёмкости литий-ионного аккумулятора при различном пороговом напряжении заряда
Стоит отметить, что при уменьшении «амплитуды циклирования» увеличивается срок эксплуатации. Что это значит? То есть, не нужно разряжать телефон до выключения и заряжать его до 100%. Благодаря этому уменьшается механическая нагрузка на электроды, которая вызвана изменением объёма из-за внедрения ионов лития. Чем глубже разряд и полнее заряд, тем большие механические напряжения испытывают электроды.
Вернуться к содержанию
Перспективы развития литий─ионных аккумуляторных батарей
Литий─ионные аккумуляторы уже превратились в полноценное семейство батарей, как щелочные или автомобильные. От остальных групп АКБ они выделяются своей высокой энергоёмкостью, режимами заряд-разряд и рядом других характеристик. Их эксплуатация требует использования электронных схем контроля заряда-разряда и некоторых других средств защиты.
В случае с литиевыми аккумуляторами задача их безопасного использования усложняется требованиями к габаритам. Они должны быть максимально компактными, поскольку используются в портативной электронике. Из-за близкого расположения электродов и стремления добиться максимальной удельной ёмкости литий─ионные аккумуляторы долго не могли вывести на рынок для коммерческого использования.
Сейчас активно ведутся разработки новых материалов для электродов. Причём при использовании нового материала проходит долгое время до того момента, как его удаётся внедрить в серийное производство.
На рынке наблюдается довольно большой разброс литиевых батарей по электрическим характеристикам, габаритам и т. п. Отчасти это происходит из-за того, что пока нет единых стандартов в этом направлении. Кроме того, рынок наводнила продукция из Китая и других стран азиатского региона. Эти производители зачастую не придерживаются никаких норм, стараясь выпустить максимально доступные аккумуляторы.
Кроме того, усовершенствование литий─ионных аккумуляторов будет вестись в направлении уменьшения размеров, увеличения энергоёмкости, более гибкие решения в плане формы и т. п. Также работы ведутся в направлении разработки материалов для катода на базе соединений лития. Их цель – создание моделей литиевых АКБ, способных заменить никель─кадмиевые аккумуляторы в устройствах, потребляющих большой ток (портативный электроинструмент).
Вернуться к содержанию
Литий-ионные (Li-ION) аккумуляторы: виды, типоразмеры, сфера применения
На протяжении не одного десятка лет устройствами, которые обеспечивали работу разного рода механизмов и автономных объектов, считались кислотные аккумуляторы.
Несмотря на многие превосходства такие батареи имели и недочеты: в аппаратах с большим потреблением электроэнергии их нельзя было использовать. Также не допускалось использование в закрытых, непроветриваемых помещениях.
Но время не стоит на месте, и на смену старого всегда приходит что-то новое. Так мало-помалу возникли литий-ионные (Li-Ion) аккумуляторы. Они стали качественнее своих предшественников, а значит, и надежнее.
Имея некоторые дефекты, им присущи минимум негативных качеств. Подробности ниже.
Все (+) и (-) литий-ионных аккумуляторов
В 70-ом году прошлого века о Li-ion АКБ стали известны. Чтобы повысить уровень электроэнергии, в такую батарею устанавливался анод лития.
Благодаря ему эксплуатация изделия увеличивалась, но возникала другая проблема: при перегревании катода могло произойти воспламенение аккумулятора.
Спустя определенный период времени этот дефект был заменен ионами металла, существенно снизив опасность возгорания батареи.
Литий-ионные аккумуляторы и ныне пользуются немалой популярностью у покупателей. Они испытаны временем, число зарядов/разрядов по циклу у них многочисленно.
Обладая слабым «эффектом памяти» и легким весом, аккумуляторы li-Ion обретают свою нужность во многих портативных и автономных устройствах. К примеру, li-ion-ные батарейки для техники быту, источники для тяги электроэнергии с высокой эффективностью.
Присутствуют у литий-ионных батареек и свои изъяны, которые в принципе могут легко компенсироваться умением накапливать энергию, благодаря высокой плотности.
Перечислим некоторые из них:
Производство литий-ионных аккумуляторов
Принцип изготовления Li-Ion АКБ происходит поэтапно:
Для того чтобы изделие стало невероятно высокого качества и не подводило впоследствии своей работы, необходимо строго соблюдать все этапы технологии производства, а также не забывать о мерах предосторожности в процессе работы.
В качестве электрода (-) в li-ION-ном аккумуляторе выступает фольга, поверхность которой покрыта веществом из Li.
В зависимости от того, для каких целей предназначена Li-ионная аккумуляторная батарея, в нее будут входить следующие Li-Ion соединения:
В «пальчиковых(АА)» и «мизинчиковых(ААА)» АКБ катод (-) находится в форме рулона и отделен от анода (+) с помощью сепаратора.
При большой площади отрицательного электрода, покрытого тоненькой пленкой, энергоемкость батареи становится значительно выше.
Как работают и что находится внутри литий-ионных аккумуляторов
Рабочая деятельность аккумулятора Li-ion заключается в следующем:
Количество таких циклов у батареек данного типа может быть до трех тысяч. И в каждом из них аккумуляторная батарейка может спустить почти весь электроток, который был накоплен во время заряда.
Интересный факт! Не все литий-ионные аккумуляторы выдерживают продолжительные по времени разрядки. К примеру, для телефонных или фотоаппаратных устройств такое действие не желательно. В них сработает схема «контроллер» и просто заблокирует заряд батареи. И только с помощью специального ЗУ ее возможно потом будет зарядить. Если же, это касается, например, устройства аппарата для лодки, то глубокий разряд на нем никак не отразится.
В отличие от «пальчиковых» АКБ более сложные элементы питания имеют в себе множество отдельных источников электрического тока с последовательным либо параллельным соединением.
Такое соединение будет зависеть от того, какой показатель электричества будет увеличен.
Виды, типоразмеры литий-ионных аккумуляторов
Литий-ионные АКБ находят широкое применение в разного рода бытовых устройствах, в электромобилях, планшетах и других видах современных гаджетов.
Также существуют промышленные Li-Ion АКБ, обладающие большой емкостью и высоким напряжением. Ниже в таблице приведем примеры более востребованных на рынке аккумуляторных батарей:
Маркировка на корпусе аккумуляторов гласит об элементах, которые добавлены в данную батарею.
Не только размер и химические добавки отличают друг от друга литий-ионные аккумуляторы, но и емкость с напряжением. Именно они помогают определить для какого электрического прибора изготовлена батарея.
Применение аккумуляторов Li-ION
Литий-ионные элементы питания незаменимы там, где возникает потребность полной отдачи электричества батареей, при ее немалом количестве циклов (заряд/разряд), не снижая емкости изделия.
В преимуществе выступает значительно небольшой вес АКБ. А значит, и применение свинцовых решеток такому устройству не потребуется.
Тщательно изучив, все (+) и (-) стороны работы литий-ионных аккумуляторов, рассмотрим область их применения:
А если рассмотреть модели с U=3 Вольт, например у «15270» или «CR2», то такой тип АКБ сможет заменить и две стандартные батарейки. Подобные аккумуляторы обычно используются в более мощных электроприборах, т.е там, где простая солевая батарейка их заменить не сможет (из-за быстрой разрядки).
Использование литий-ионных АКБ
Продолжительность жизни литий-ионного аккумулятора зависит от правильной эксплуатации изделия.
Есть две основные ошибки использования данного вида АКБ:
Как уберечь Li-ионный аккумулятор, поставив его на хранение?
Перед тем как поставить на хранение литий-ионный аккумулятор, надо соблюсти некоторые последовательные правила-пункты:
Саморазряд литий-ионных АКБ невысок, поэтому за его хранение можно не переживать в течение многих лет. Однако следует помнить при этом, что емкость изделия будет потихоньку тоже снижаться.
Переработка литий-ионных элементов питания
Li-Ion батареи содержат в себе вредные для жизни вещества, поэтому дома не стоит их даже пытаться разбирать. Когда срок службы АКБ закончился, ее необходимо утилизировать.
Для этого и существуют специальные приемные пункты по сбору, просрочившихся либо негодных батарей. За такую услугу можно получить вознаграждение в денежном эквиваленте.
И это не фантазии! Любое литий-ионное изделие содержит в себе не дешевый элемент, который после переработки оживет и будет числиться на рабочем посту дальше.