что влияет на плотность воздуха
Плотность воздуха
Что такое плотность воздуха и что она определяет. Она является физической величиной которая характеризует основную массу воздуха в нормальных условиях, а так же в Земной атмосфере, газовую массу в единичном объеме. Плотность воздуха выглядит как функция имеющая значения влажность, температура и высота происходящих замеров.
Как известно ранее обозначения плотности воздуха брались от полярного сияния, радиуса радиоволны, метеоры и так далее. Но как только у Земли появились собственные спутники, информация стала вычисляться более научным и правильным путем.
Однако, воздух может изменять свой вес, из-за этого данная величина будет не постоянной и изменятся при любых изменениях, например инерция или географическая широта. Так как на полюсе данная величина будет в 5 % выше, её экваториальных измерений.
Заметка: Широкий выбор крепежной техники (http://krepzakaz.ru/) представлен на сайте, перейти на который можно с помощью указанной ссылки. Вы сможете не только выбрать все что Вам нужно, но так же заказать это с доставкой. Согласитесь это удобно!
Температура влияет на плотность воздуха, ее изменение влечет за собой незамедлительную реакцию со стороны плотности. Так большое давление влечет за собой большую плотность. А с изменениями в меньшую сторону, уменьшается и плотность. Но не все так просто, существует Основное уравнение статистики. Оно заключается в том, что увеличение давления терпит изменение и уменьшается в случае подъема на равную высоту уменьшения давления равносильно большей силе тяжести и плотности воздуха.
Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
ЗАВИСИМОСТЬ ПЛОТНОСТИ ВОЗДУХА ОТ ЕГО ТЕМПЕРАТУРЫ И
ДАВЛЕНИЯ
При изменении давления и температуры изменяется плотность воздуха.
Таким образом, можно сделать заключение, что чем выше давление и ниже температура, тем больше плотность воздуха. Поэтому наибольшая плотность воздуха зимой в морозную погоду, а наименьшая летом в теплую погоду. Также следует заметить, что плотность влажного воздуха меньше, чем сухого (при одних и тех же условиях). Поэтому иногда учитывают и влажность, вводя при этом в расчеты соответствующие изменения.
С высотой плотность воздуха падает, так как давление в большей степени падает, чем понижается температура воздуха.
ФИЗИЧЕСКИЕ СВОЙСТВА ВОЗДУХА
На характер обтекания самолета воздушным потоком и на величину сил, возникающих при взаимодействии частей самолета и воздушного потока, существенное влияние оказывают физические свойства воздуха: инертность, вязкость, сжимаемость.
При движении самолета в воздушном потоке возникает сопротивление трения, которое определяет вязкость воздуха. Вязкость воздуха также определяет динамический коэффициент вязкости. Чем больше температура воздуха, тем больше коэффициент вязкости, обусловленный увеличением хаотического движения молекул и ростом эффективности воздействия одного слоя воздуха на другой.
МЕЖДУНАРОДНАЯ СТАНДАРТНАЯ АТМОСФЕРА
Изменение основных параметров воздуха (давления, температуры и плотности) влияет на величину сил, возникающих при движении самолета в воздушном потоке. Поэтому при полетах в разных метеорологических и климатических условиях изменяются летные и аэродинамические характеристики самолетов.
Чтобы охарактеризовать летные и аэродинамические данные самолетов при одинаковых параметрах воздуха, всеми странами принята единая Международная стандартная атмосфера (МСА).
Таблица МСА составлена на основании среднегодовых условий средних широт (широта около 45°) на уровне моря при влажности нуль процентов и следующих параметрах воздуха:
барометрическое давление В =760 мм рт. ст. (Ро= 10330 кгс/м 2 );
температура t=+15°C (То=288 К);
массовая плотность 0,125 кгс см 4 ;
Согласно МСА температура воздуха в тропосфере падает на 6,5°С на каждые 1000 м.
Высота H, м | Давление на высоте P H мм | Температура на высоте t H в градусах С | Плотность воздуха r |
760,0 | 15,0 | 1,2255 | |
751,0 | 14,4 | 1,2137 | |
742,1 | 13,7 | 1,2021 | |
733,3 | 13,1 | 1,1906 | |
724,6 | 12,4 | 1,1791 | |
716,0 | 11,8 | 1,1677 | |
707,4 | 11,1 | 1,1564 | |
699,0 | 10,5 | 1,1452 | |
690,6 | 9,8 | 1,1340 | |
682,2 | 9,2 | 1,1230 | |
674,0 | 8,5 | 1,1120 | |
634,1 | 5,3 | 1,0581 | |
596,1 | 2,0 | 1,0067 | |
560,0 | -1,2 | 0,9578 | |
525,7 | -4,5 | 0,9093 | |
493,1 | -7,7 | 0,8633 | |
462,2 | -11,0 | 0,8192 | |
432,8 | -14,2 | 0,7768 | |
404,8 | -17,5 | 0,7361 | |
378,5 | -20,7 | 0,6971 | |
353,7 | -24,0 | 0,6596 | |
330,1 | -27,2 | 0,6238 | |
307,8 | -30,5 | 0,5894 | |
286,7 | -33,7 | 0,5565 | |
266,8 | -37,0 | 0,5250 | |
248,0 | -40,2 | 0,4949 | |
230,4 | -43,5 | 0,4662 | |
213,7 | -46,7 | 0,4387 | |
198,1 | -50,0 | 0,4125 | |
90,2 | -56,0 | 0,1935 | |
40,9 | -56,5 | 0,0880 |
Аэродинамика это наука о законах движения воздушной (газовой) среды и силового взаимодействия этой среды с граничными поверхностями.
Граничные поверхности разделяются на:
— внешние – поверхности тел, обтекаемые потоком;
— внутренние – газ движется внутри различных каналов.
При малых скоростях полета воздух принимается как несжимаемая среда. Но с ростом скорости полета (на трасзвуковых и сверхзвуковых скоростях) необходимо учитывать свойство сжимаемости среды. При полетах на небольших высотах воздушную среду принимают сплошной. Но при полете на больших высотах, где плотность воздуха очень мала, необходимо уже применять другие зависимости, которые должны учитывать несплошность среды. На высотах до 15 км (высоты полета гражданских самолетов) во всех случаях принимаем среду сплошной. Это справедливо, ведь размеры исследуемых тел (самолет, вертолет, планер и другие летательные аппараты) гораздо больше свободного пробега молекул.
Основные параметры среды
— g = 9,81 – ускорение свободного падения (м/с 2 );
— V m ρ = (плотность) – это масса газа (жидкости) заключенная в единице объема (кг/м 3 ), для воздуха ρ=1,225;
— массовые силы – силы, действующие на каждый элемент среды (сила тяжести, сила инерции);
— поверхностные силы – силы, действующие на поверхности S со стороны окружающей среды (трение, давление);
— силы трения – силы, действующие по касательной к поверхности (Н/м 2 );
— силы давления – силы, действующие перпендикулярно поверхности (Н/м 2 ).
Основные свойства среды
— Вязкость – способность сопротивляться деформации сдвига. Идеальная среда – среда, в которой отсутствуют вязкость.
— Сжимаемость – способность среды изменять свой объем (плотность) при изменений давления и температуры: R T p = ⋅ ρ ; где R – газовая постоянная (для воздуха R=29,27); Т – температура (град К); T=t+273; t – температура (град С).
— Скорость звука – скорость распространения звука в газовой среде:6 k R T 20 1, T p k d dp a = = ⋅ = ⋅ ⋅ = ⋅ ρ ρ; где k=1.4.
Процессы изменения состояния газа
— Изотермический – при изменении состояния газа температура постоянна (dT=0).
— Изобарный – при изменении состояния газа давление постоянно (dР=0).
— Изохорный– при изменении состояния газа объем постоянный (dV=0).
— Изотропный – при изменении состояния газа энергия среды постоянна (dЕ=0).
— Адиабатический – при изменении состояния газа отсутствует теплообмен.
— Изоэнтропический – при изменении состояния газа энтропия (Энтропия — это сокращение доступной энергии вещества в результате передачи энергии) остается постоянной (dS=0).
Течение газа или жидкости выражается двумя важными уравнениями: уравнением неразрывности потока и уравнением Бернулли.
Уравнение неразрывности потока отражает закон сохранения массы: количество входящего потока равно количеству выходящему. Например, на рис. 1 расходы во входном и выходном сечениях равны:
Рисунок 1. Схема к уравнению непрерывности потока
С учётом, что q = V ω, получим уравнение неразрывности потока:
Если отсюда выразим скорость для выходного сечения
то легко заметить, что она увеличивается обратно пропорционально площади живого сечения потока. Такая обратная зависимость между скоростью и площадью является важным следствием уравнения неразрывности и применяется в технике, например, при тушении пожара для получения сильной и дальнобойной струи воды.
Как изменится скорость потока, если диаметр напорной трубы d уменьшится в два раза? Площадь живого сечения такой трубы
Тогда отношение площадей в формуле (18) будет равно 4.
Таким образом, при уменьшении диаметра трубы в два раза — скорость потока увеличится в четыре раза. Аналогично, если диаметр уменьшится в три раза — скорость возрастёт в девять раз.
Уравнение Бернулли
Рассмотрим поток газа, проходящий по трубопроводу переменного сечения. В первом сечении приведённое полное давление равно Рпр.п1. При прохождении по трубе часть Рпр.п1 необратимо потеряется из-за проявления сил внутреннего трения газа и во втором сечении энергетическая характеристика уменьшится до Рпр.п2 на величину потерь давления D Рпот.
Уравнение Бeрнýлли для газа в простейшем виде записывается так:
Уравнение Бeрнýлли в традиционной записи получим, если в последнем равенстве раскроем значения приведённых полных давлений Рпр.п1 и Рпр.п2 по:
Энергетический смысл уравнения Бeрнýлли для газа заключается в том, что оно отражает закон сохранения энергии, а геометрический не рассматривается, так как величины в нём выражаются в единицах давления (Па), а не напора (м).
Разность давлений и потери давления
Движение газа происходит только при наличии разности приведённых полных давлений DРпр = Рпр.п1 – Рпр.п2 от бóльшего давления Рпр.п1 к меньшему Рпр.п2. Например, так работает естественная вентиляция для удаления воздуха из помещений зданий.
Потери давления DРпот отражают потерю полной энергии потока при движении газа. Например, чем длиннее воздуховод, меньше его проходное сечение, шероховатее его стенки, тем больше будут потери давления DРпот в системе вентиляции, что может ухудшить удаление несвежего воздуха из помещений.
Таким образом, «разность давлений» является причиной движения газа, а «потери давления» — следствием. Измеряются они в одних и тех же единицах СИ — паскалях (Па).
Дата добавления: 2016-02-02 ; просмотров: 19093 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Физические свойства воздуха: плотность, вязкость, удельная теплоемкость
Рассмотрены основные физические свойства воздуха: плотность воздуха, его динамическая и кинематическая вязкость, удельная теплоемкость, теплопроводность, температуропроводность, число Прандтля и энтропия. Свойства воздуха даны в таблицах в зависимости от температуры при нормальном атмосферном давлении.
Плотность воздуха в зависимости от температуры
Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа. Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.
На практике, чтобы узнать какова плотность воздуха при различных температурах, удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).
t, °С | ρ, кг/м 3 | t, °С | ρ, кг/м 3 | t, °С | ρ, кг/м 3 | t, °С | ρ, кг/м 3 |
---|---|---|---|---|---|---|---|
-50 | 1,584 | 20 | 1,205 | 150 | 0,835 | 600 | 0,404 |
-45 | 1,549 | 30 | 1,165 | 160 | 0,815 | 650 | 0,383 |
-40 | 1,515 | 40 | 1,128 | 170 | 0,797 | 700 | 0,362 |
-35 | 1,484 | 50 | 1,093 | 180 | 0,779 | 750 | 0,346 |
-30 | 1,453 | 60 | 1,06 | 190 | 0,763 | 800 | 0,329 |
-25 | 1,424 | 70 | 1,029 | 200 | 0,746 | 850 | 0,315 |
-20 | 1,395 | 80 | 1 | 250 | 0,674 | 900 | 0,301 |
-15 | 1,369 | 90 | 0,972 | 300 | 0,615 | 950 | 0,289 |
-10 | 1,342 | 100 | 0,946 | 350 | 0,566 | 1000 | 0,277 |
-5 | 1,318 | 110 | 0,922 | 400 | 0,524 | 1050 | 0,267 |
0 | 1,293 | 120 | 0,898 | 450 | 0,49 | 1100 | 0,257 |
10 | 1,247 | 130 | 0,876 | 500 | 0,456 | 1150 | 0,248 |
15 | 1,226 | 140 | 0,854 | 550 | 0,43 | 1200 | 0,239 |
Динамическая и кинематическая вязкость воздуха при различных температурах
При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).
Представлена таблица удельной теплоемкости воздуха при различных температурах. Теплоемкость в таблице дана при постоянном давлении (изобарная теплоемкость воздуха) в интервале температуры от минус 50 до 1200°С для воздуха в сухом состоянии. Чему равна удельная теплоемкость воздуха? Величина удельной теплоемкости определяет количество тепла, которое необходимо подвести к одному килограмму воздуха при постоянном давлении для увеличения его температуры на 1 градус. Например, при 20°С для нагревания 1 кг этого газа на 1°С в изобарном процессе, требуется подвести 1005 Дж тепла.
Следует отметить, что теплоемкость влажного воздуха выше, чем сухого. Если сравнить теплоемкость воды и воздуха, то очевидно, что вода обладает более высоким ее значением и содержание воды в воздухе приводит к увеличению удельной теплоемкости.
t, °С | Cp, Дж/(кг·град) | t, °С | Cp, Дж/(кг·град) | t, °С | Cp, Дж/(кг·град) | t, °С | Cp, Дж/(кг·град) |
---|---|---|---|---|---|---|---|
-50 | 1013 | 20 | 1005 | 150 | 1015 | 600 | 1114 |
-45 | 1013 | 30 | 1005 | 160 | 1017 | 650 | 1125 |
-40 | 1013 | 40 | 1005 | 170 | 1020 | 700 | 1135 |
-35 | 1013 | 50 | 1005 | 180 | 1022 | 750 | 1146 |
-30 | 1013 | 60 | 1005 | 190 | 1024 | 800 | 1156 |
-25 | 1011 | 70 | 1009 | 200 | 1026 | 850 | 1164 |
-20 | 1009 | 80 | 1009 | 250 | 1037 | 900 | 1172 |
-15 | 1009 | 90 | 1009 | 300 | 1047 | 950 | 1179 |
-10 | 1009 | 100 | 1009 | 350 | 1058 | 1000 | 1185 |
-5 | 1007 | 110 | 1009 | 400 | 1068 | 1050 | 1191 |
0 | 1005 | 120 | 1009 | 450 | 1081 | 1100 | 1197 |
10 | 1005 | 130 | 1011 | 500 | 1093 | 1150 | 1204 |
15 | 1005 | 140 | 1013 | 550 | 1104 | 1200 | 1210 |
Теплопроводность, температуропроводность, число Прандтля воздуха
Теплопроводность воздуха λ при повышении температуры увеличивается во всем диапазоне, достигая при 1200°С величины 0,0915 Вт/(м·град). Другие теплофизические свойства воздуха такие, как его температуропроводность a и число Прандтля Pr, по-разному реагируют на изменение температуры. Температуропроводность, как и вязкость воздуха сильно зависит от температуры и при нагревании, например с 0 до 1200°С, ее значение увеличивается почти в 17 раз.
Число Прандтля воздуха слабо зависит от температуры и при нагревании этого газа его величина сначала снижается до величины 0,674, а затем начинает расти, и при температуре 1200°С достигает значения 0,724.
Энтропия сухого воздуха
Источники:
Что такое плотность воздуха и чему она равна при нормальных условиях?
Плотность воздуха — это физическая величина, характеризующая удельную массу воздуха при естественных условиях или массу газа атмосферы Земли на единицу объема. Величина плотности воздуха представляет собой функцию от высоты производимых измерений, от его влажности и температуры.
Содержание
Плотность воздуха равна… ^
За стандарт плотности воздуха принята величина, равная 1,29 кг/м3, которая вычисляется как отношение его молярной массы (29 г/моль) к молярному объему, одинаковому для всех газов (22,413996 дм3), соответствующая плотности сухого воздуха при 0°С (273,15°К) и давлении 760 мм ртутного столба (101325 Па) на уровне моря (то есть при нормальных условиях).
Определение плотности воздуха ^
Не так давно сведения о плотности воздуха получали косвенно за счет наблюдений за полярными сияниями, распространением радиоволн, метеорами. С момента появления искусственных спутников Земли плотность воздуха начали вычислять благодаря данным, полученным от их торможения.
Еще один метод заключается в наблюдениях за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами. В Европе плотность воздуха у поверхности Земли составляет 1,258 кг/м3, на высоте пяти км — 0,735, на высоте двадцати км — 0,087, на высоте сорока км — 0,004 кг/м3.
Различают два вида плотности воздуха: массовая и весовая (удельный вес).
Если вам стало тяжело дышать, какие могут быть причины этого явления? Об этом можно прочитать здесь. Бережем свое здоровье!
Формула плотности воздуха ^
Весовая плотность определяет вес 1 м3 воздуха и вычисляется по формуле γ = G/V, где γ – весовая плотность, кгс/м3; G — вес воздуха, измеряемый в кгс; V – объем воздуха, измеряемый в м3. Установлено, что 1 м3 воздуха при стандартных условиях (барометрическое давление 760 мм ртутного столба, t=15°С) весит 1,225 кгс, исходя из этого, весовая плотность (удельный вес) 1 м3 воздуха равна γ =1,225 кгс/м3.
Что такое относительная плотность по воздуху? ^
Следует принять во внимание, что вес воздуха – это величина изменчивая и меняется в зависимости от различных условий, таких как географическая широта и сила инерции, которая возникает при вращении Земли вокруг своей оси. На полюсах вес воздуха на 5% больше, чем в зоне экватора.
Массовая плотность воздуха ρ вычисляется по следующей формуле: ρ = m / v. Здесь m – масса воздуха, измеряемая в кг×с2/м; ρ – его массовая плотность, измеряемая в кгс×с2/м4.
Массовая и весовая плотности воздуха находятся в зависимости: ρ = γ / g, где g – коэффициент ускорения свободного падения, равный 9,8 м/с². Откуда следует, что массовая плотность воздуха при стандартных условиях равна 0,1250 кг×с2/м4.
Как плотность воздуха зависит от температуры? ^
При изменении барометрического давления и температуры плотность воздуха изменяется. Исходя из закона Бойля-Мариотта, чем больше давление, тем больше будет плотность воздуха. Однако с уменьшением давления с высотой, уменьшается и плотности воздуха, что привносит свои коррективы, в результате чего закон изменения давления по вертикали становится сложнее.
Уравнение, которое выражает данный закон изменения давления с высотой в атмосфере, находящейся в покое, называется основным уравнением статики.
Важная роль в этом уравнении принадлежит изменениям плотности воздуха. В итоге можно сказать, что чем выше подниматься, тем меньше будет падать давление при подъеме на одинаковую высоту. Плотность воздуха от температуры зависит следующим образом: в теплом воздухе давление уменьшается менее интенсивно, чем в холодном, следовательно, на одинаково равной высоте в теплой воздушной массе давление более высокое, чем в холодной.
При изменяющихся значениях температуры и давления массовая плотность воздуха вычисляется по формуле: ρ = 0,0473хВ / Т. Здесь В – это барометрическое давление, измеряемое в мм ртутного столба, Т — температура воздуха, измеряемая в Кельвинах.
Как выбирают газовые обогреватели для дачи, по каким характеристикам, параметрам?
Что такое промышленный осушитель сжатого воздуха? Читайте про это здесь, наиболее интересная и актуальная информация.
Какие сейчас цены на озонотерапию? Вы узнаете об этом в данной статье:
http://about-air.ru/sostav-vozduha/ozon/ozonoterapiya-otzyvy.html. Отзывы, показания и противопоказания при озонотерапии.
Как измеряется плотность паров по воздуху? ^
Также плотность определяется и влажностью воздуха. Наличие водяных поров приводит к уменьшению плотности воздуха, что объясняется низкой молярной массой воды (18 г/моль) на фоне молярной массы сухого воздуха (29 г/моль). Влажный воздух можно рассмотреть как смесь идеальных газов, в каждом из которых комбинация плотностей позволяет получить требуемое значение плотности для их смеси.
Такая, своего рода, интерпретация позволяет определять значения плотности с уровнем погрешности менее 0,2% в диапазоне температур от −10 °C до 50 °C. Плотность воздуха позволяет получить величину его влагосодержания, которая вычисляется путем деления плотности водяного пара (в граммах), который содержится в воздухе, на показатель плотности сухого воздуха в килограммах.
Основное уравнение статики не позволяет решать постоянно возникающие практические задачи в реальных условиях изменяющейся атмосферы. Поэтому его решают при различных упрощенных предположениях, которые соответствуют фактическим реальным условиям, за счет выдвижения ряда частных предположений.
Основное уравнение статики дает возможность получить значение вертикального градиента давления, который выражает изменение давления при подъеме или спуске на единицу высоты, т. е. изменение давления на единицу расстояния по вертикали.
Низкая плотность воздуха определяет незначительное сопротивление передвижению. Многими наземными животными, в ходе эволюции, использовались экологические выгоды этого свойства воздушной среды, за счет чего они приобрели способность к полету. 75% всех видов наземных животных способны к активному полету. По большей части это насекомые и птицы, но встречаются млекопитающие и рептилии.
Видео на тему «Определение плотности воздуха»
Еще интересные статьи:
3 отзыва на статью“ Что такое плотность воздуха и чему она равна при нормальных условиях? ”
Удельный вес воздуха равен нулю! Ваши опыты по определению удельного веса-плотности воздуха не выдерживают никакой критики! Вы просто затуманиваете мозги детей! Чтобы определить вес колбы без воздуха, весы с колбой необходимо поместить под колпак(колокол) и так же как вы откачали воздух из колбы откочать его из под колпака(колокола). Тогда ваши весы покажут, что вес колбы с воздухом и без него одинаковый. И Удельный вес воздуха равен нулю!
Можно замерить вес воздуха с помощью полиэтиленовых мешков. В один мешок наберите воздух а в другой нет. Подвесте оба мешка на рычажные весы и вы убедитесь еще раз в том что вес мешка с воздухом и без него одинаковый. Следовательно возду в воздухе ничего не весит! А Удельный вес воздуха равен нулю!
Вы знаете, еще Галилей установил, что у воздуха есть вес. Это учебник физики за 7 класс. Все правильно в статье.
Воздух имеет вес. И массу. На несогласного можно подуть из шланга с компрессора.