что включает в себя школьный предмет алгебра
Алгебра
А́лгебра (от араб. الجبر , «аль-джабр» — восполнение [1] ) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.
Алгебраическая система — упорядоченная пара множеств . Первое множество (
) — элементы какой либо природы (числа, понятия, буквы). Второе множество (
) — операции над первым множеством (сложение, умножение, возведение в степень). Примеры: группа, кольцо, поле.
Содержание
История
Истоки алгебры уходят к временам глубокой древности. Ещё 4000 лет назад вавилонские учёные могли решать квадратные уравнения. Тогда никаких обозначений не было, и уравнения записывались в словесной форме. Первые обозначения появились в Древней Греции благодаря учёному Диофанту. Неизвестное число он назвал «ἀριθμός», вторую степень неизвестного — «δύναμις», третью «κύβος», четвёртую — «дюнамодюнамис», пятую — «дюнамокюбос», шестую — «кюбоккюбос». Все эти величины он обозначал сокращениями (ар, дю, кю, ддю, дкю, ккю). Ни вавилоняне, ни греки не знали и не признавали отрицательные числа.
За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения. Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В 13 веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя. [2]
В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.
Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.
Классификация
Алгебру можно грубо разделить на следующие категории:
В некоторых напралениях углублённого изучения, аксиоматические алгебраические системы, такие как группы, кольца, поля и алгебры над полем на присутствие геометрических структур (метрик и топологий), совместимых с алгебраическими структурами. Список некоторых разделов функционального анализа:
Элементарная алгебра
Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a,b,c,x,y и так далее). Такой подход полезен, потому что:
Что включает в себя школьный предмет алгебра
(остальные материалы готовятся к публикации)
Глава 3. Алгебра 8 класс
(остальные материалы готовятся к публикации)
Глава 4. Алгебра 9 класс
(остальные материалы готовятся к публикации)
Глава 5. Материалы для подготовки к ОГЭ
Глава 6. Алгоритмы решения задач по алгебре
Электронные формы учебников для 6-9 классов (ссылки):
Алгебра (от араб. الْجَبْر, «аль-джабр» — восполнение) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики. Слово «алгебpа» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Алгeбра как раздел математики традиционно включает следующие категории: Элементарная, Общая, Универсальная, Линейная (включая матрицы) и Алгебраическая комбинаторика.
Элементарная алгебpа, которая изучает свойства операций с вещественными числами. В ней постоянные и переменные обозначаются буквенными символами. Элементарная алгeбpа содержит правила преобразования математических выражений и уравнений с использованием этих символов. Обычно преподаётся в школе под названием aлгебра.
Источники идей и цитат для конспектов по Алгебре:
(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).
А́ЛГЕБРА
Том 1. Москва, 2005, стр. 415
Скопировать библиографическую ссылку:
А́ЛГЕБРА [ср.-век. лат. algebra, от араб. аль-джебр, аль-джабр – воссоединение (отдельных частей уравнения)], раздел математики, принадлежащий, наряду с арифметикой и геометрией, к числу старейших ветвей этой науки; она изучает операции над математич. объектами и влияет на формирование общих понятий и методов математики. Задачи и методы А. заключались первоначально в составлении и решении уравнений. В связи с исследованиями уравнений развивалось понятие числа, были введены отрицательные, рациональные, иррациональные и комплексные числа; общее исследование свойств этих числовых систем относится к А. В алгебре сформировались буквенные обозначения, позволившие записать свойства действий над числами в форме, не содержащей конкретных чисел. Преобразования по определённым правилам (связанным со свойствами действий) буквенных выражений составляет аппарат классич. А. Развитие А. оказало большое влияние на развитие новых областей математики, в частности математич. анализа, дифференциального и интегрального исчисления. Применение А. возможно всюду, где приходится иметь дело с операциями, аналогичными сложению и умножению чисел. Эти операции могут производиться над объектами самой различной природы. Наиболее известным примером такого расширенного применения алгебраич. методов является векторная алгебра (см. Линейная алгебра ) и её дальнейшее обобщение – тензорная алгебра (см. Тензорное исчисление ), ставшая одним из важных средств совр. физики.
Разделы математики
Существует три официальных способа подразделения математики.
Содержание
Математика как специальность
Математика как специальность научных работников министерства науки и технологий Российской Федерации [1] подразделяется на научные специальности
Математика как учебная дисциплина
Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе, и образованную дисциплинами:
и высшую математику, изучаемую в ВУЗе. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности. Программа обучения по специальности математика [2] образована следующими учебными дисциплинами:
Знаком (ф) отмечены дисциплины, которые изучаются при обучении по специальности «физика».
Систематизация научных работ
Для систематизации научных работ используется Универсальная десятичная классификация 51.
Примечания
Полезное
Смотреть что такое «Разделы математики» в других словарях:
МАТЕМАТИКИ ИСТОРИЯ — Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера
История математики — История науки … Википедия
История математики в России — Данная статья часть обзора История математики. Содержание 1 Древность и средневековье 2 XVII век 3 … Википедия
Философия математики — учение о сущности математического знания и о базовых принципах математических доказательств, раздел философии науки; её можно также назвать «метаматематикой». Содержание 1 Возможность оснований математики 2 Литература … Википедия
История математики в Индии — Данная статья часть обзора История математики. Научные достижения индийской математики широки и многообразны. Уже в древние времена учёные Индии на своём, во многом оригинальном пути развития достигли высокого уровня математических знаний.… … Википедия
Институт математики и механики (НИИММ СПбГУ) — Научно исследовательский институт математики и механики имени академика В. И. Смирнова (НИИММ СПбГУ) структурное подразделение Санкт Петербургского государственного университета. Выполняет организационную роль, является материальной базой для… … Википедия
Математика — Евклид. Деталь «Афинской школы» Рафаэля Математика (от др. греч … Википедия
Дискретная математика — Дискретная математика область математики, занимающаяся изучением дискретных структур, которые возникают как в пределах самой математики, так и в её приложениях. К числу таких структур могут быть отнесены конечные группы, конечные графы, а… … Википедия
Математический анализ — У этого термина существуют и другие значения, см. Анализ. Математический анализ совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений. При столь общей… … Википедия
МЕТОД АКСИОМАТИЧЕСКИЙ — способ построения теории, при к ром в ее основу кладутся нек рые ее положения – аксиомы или постулаты, – из к рых все остальные положения теории (теоремы) выводятся путем рассуждений, называемых д о к а з а т е л ь с т в а м и. Правила, по к рым… … Философская энциклопедия
Классификация раздела
Алгебра является разделом математики. Она классифицируется на несколько видов:
Каждый из этих разделов решает определенные задачи. При этом наука не стоит на месте и продолжает развитие.
Древняя история
Информация об истории возникновения алгебры связывается с древними рукописями. В те времена появилось понятие о натуральных числах, с которыми можно было проводить арифметические операции. Такая потребность возникла в связи с проведением астрономических и других видов расчетов. Изучая историю алгебры, становится понятно, что ее зарождение произошло в античной Греции.
Происхождение науки связывается с мыслителем Диофантом. На сегодняшний день трудно сказать, кто придумал алгебру, но именно этим человеком были впервые введены буквенные обозначения чисел. На основании полученных сообщений известно, что Диофант знал о сокращении чисел и умел переносить члены из разных частей уравнения.
Информация об ученом содержится только в одном историческом труде, поэтому сказать точно, что математик создал алгебру, невозможно. К тому же этот источник дошел до нынешних времен не в полном объеме.
Продвижение на Восток
Достижения европейцев в области развития алгебры прервались после нашествий варварских племен. Кроме того, уменьшение к ней интереса произошло с открытием геометрии, которая стала считаться основным разделом математики. В этот период многие науки получили свое развитие на Востоке. Здесь продолжилось становление и алгебры. Поскольку все достижения Европы практически были забыты, создателем этой науки в мусульманском мире считается Ала-Хорезми. Произошло это после создания им трактата под названием «Учение об отношениях, перестановках и решениях». Некоторые ученые считают, что слово «алгебра» может вести свое начало от термина «алгоритм».
При этом существуют гипотезы, что мусульманский мир опирался в своих изучениях на европейские достижения. В некоторых их летописях присутствуют фамилии греческих последователей Диофанта, приводятся их высказывания относительно этой науки.
Вклад других стран
Основателем алгебры считается Ала-Хорезми, но особого развития она у арабов она получила. Однако именно они изобрели на своем языке арабские цифры, которые применяются в современном мире. Существенный вклад в развитие науки внесли представители и других стран. Кратко их достижения выражаются в следующем:
Таким образом, в развитии этого раздела принимали участие многие страны мира. Их исследовательские работы вносили общий вклад в становление алгебры.
Под конец XVI века эта часть математики снова возвращается в Европу, откуда она взяла свое начало. Этому способствовало купечество, разъезжающее по всему свету и знакомившееся с математикой. Дальнейший толчок произошел после распада феодальной системы. Страны, ставшие на капиталистический путь развития, уже не могли обойтись без алгебраических действий.
Алгебра относится к наиболее интересным наукам, которые изучаются учениками школ и студентами вузов. Учащиеся постоянно пишут рефераты и готовят доклады на различные темы, относящиеся к этому разделу математики. В дальнейшем они зачитывают свои работы на уроках.