что включает в себя школьный предмет алгебра

Алгебра

А́лгебра (от араб. الجبر ‎‎, «аль-джабр» — восполнение [1] ) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.

Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.

Алгебраическая система — упорядоченная пара множеств что включает в себя школьный предмет алгебра. 2857111706f02d396df437280e7d4367. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-2857111706f02d396df437280e7d4367. картинка что включает в себя школьный предмет алгебра. картинка 2857111706f02d396df437280e7d4367.. Первое множество (что включает в себя школьный предмет алгебра. e1e1d3d40573127e9ee0480caf1283d6. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-e1e1d3d40573127e9ee0480caf1283d6. картинка что включает в себя школьный предмет алгебра. картинка e1e1d3d40573127e9ee0480caf1283d6.) — элементы какой либо природы (числа, понятия, буквы). Второе множество (что включает в себя школьный предмет алгебра. 3a3ea00cfc35332cedf6e5e9a32e94da. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-3a3ea00cfc35332cedf6e5e9a32e94da. картинка что включает в себя школьный предмет алгебра. картинка 3a3ea00cfc35332cedf6e5e9a32e94da.) — операции над первым множеством (сложение, умножение, возведение в степень). Примеры: группа, кольцо, поле.

Содержание

История

Истоки алгебры уходят к временам глубокой древности. Ещё 4000 лет назад вавилонские учёные могли решать квадратные уравнения. Тогда никаких обозначений не было, и уравнения записывались в словесной форме. Первые обозначения появились в Древней Греции благодаря учёному Диофанту. Неизвестное число он назвал «ἀριθμός», вторую степень неизвестного — «δύναμις», третью «κύβος», четвёртую — «дюнамодюнамис», пятую — «дюнамокюбос», шестую — «кюбоккюбос». Все эти величины он обозначал сокращениями (ар, дю, кю, ддю, дкю, ккю). Ни вавилоняне, ни греки не знали и не признавали отрицательные числа.

За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения. Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В 13 веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя. [2]

В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.

Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.

Классификация

Алгебру можно грубо разделить на следующие категории:

В некоторых напралениях углублённого изучения, аксиоматические алгебраические системы, такие как группы, кольца, поля и алгебры над полем на присутствие геометрических структур (метрик и топологий), совместимых с алгебраическими структурами. Список некоторых разделов функционального анализа:

Элементарная алгебра

Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a,b,c,x,y и так далее). Такой подход полезен, потому что:

Источник

Что включает в себя школьный предмет алгебра

(остальные материалы готовятся к публикации)

Глава 3. Алгебра 8 класс

(остальные материалы готовятся к публикации)

Глава 4. Алгебра 9 класс

(остальные материалы готовятся к публикации)

Глава 5. Материалы для подготовки к ОГЭ

Глава 6. Алгоритмы решения задач по алгебре

Электронные формы учебников для 6-9 классов (ссылки):

Алгебра (от араб. الْجَبْر‎, «аль-джабр» — восполнение) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики. Слово «алгебpа» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.

Алгeбра как раздел математики традиционно включает следующие категории: Элементарная, Общая, Универсальная, Линейная (включая матрицы) и Алгебраическая комбинаторика.

Элементарная алгебpа, которая изучает свойства операций с вещественными числами. В ней постоянные и переменные обозначаются буквенными символами. Элементарная алгeбpа содержит правила преобразования математических выражений и уравнений с использованием этих символов. Обычно преподаётся в школе под названием aлгебра.

Источники идей и цитат для конспектов по Алгебре:

(с) Цитаты из вышеуказанных учебных пособий использованы на сайте в незначительных объемах, исключительно в учебных и информационных целях (пп. 1 п. 1 ст. 1274 ГК РФ).

Источник

А́ЛГЕБРА

Том 1. Москва, 2005, стр. 415

Скопировать библиографическую ссылку:

А́ЛГЕБРА [ср.-век. лат. al­geb­ra, от араб. аль-джебр, аль-джабр – вос­со­е­ди­не­ние (от­дель­ных ча­стей урав­не­ния)], раз­дел ма­те­ма­ти­ки, при­над­ле­жа­щий, на­ря­ду с ариф­ме­ти­кой и гео­мет­ри­ей, к чис­лу ста­рей­ших вет­вей этой нау­ки; она изу­ча­ет опе­ра­ции над ма­те­ма­тич. объ­ек­та­ми и влия­ет на фор­ми­ро­ва­ние об­щих по­нятий и ме­то­дов ма­те­ма­ти­ки. За­да­чи и ме­то­ды А. за­клю­ча­лись пер­во­на­чаль­но в со­став­ле­нии и ре­ше­нии урав­не­ний. В свя­зи с ис­сле­до­ва­ния­ми урав­не­ний раз­ви­ва­лось по­ня­тие чис­ла, бы­ли вве­де­ны от­ри­ца­тель­ные, ра­ци­о­наль­ные, ир­ра­цио­наль­ные и ком­плекс­ные чис­ла; об­щее ис­сле­до­ва­ние свойств этих чи­сло­вых сис­тем от­но­сит­ся к А. В ал­геб­ре сфор­ми­ро­ва­лись бу­к­вен­ные обо­зна­че­ния, по­зво­лив­шие за­пи­сать свой­ст­ва дей­ст­вий над чис­ла­ми в фор­ме, не со­дер­жа­щей кон­крет­ных чи­сел. Пре­об­ра­зо­ва­ния по оп­ре­де­лён­ным пра­ви­лам (свя­зан­ным со свой­ст­ва­ми дей­ст­вий) бу­к­вен­ных вы­ра­же­ний со­став­ля­ет ап­па­рат клас­сич. А. Раз­ви­тие А. ока­за­ло боль­шое влия­ние на раз­ви­тие но­вых об­лас­тей ма­те­ма­ти­ки, в ча­ст­но­сти ма­те­ма­тич. ана­ли­за, диф­фе­рен­ци­аль­но­го и ин­те­граль­но­го ис­чис­ле­ния. При­ме­не­ние А. воз­мож­но всю­ду, где при­хо­дит­ся иметь де­ло с опе­ра­ция­ми, ана­ло­гич­ны­ми сло­же­нию и ум­но­же­нию чи­сел. Эти опе­ра­ции мо­гут про­из­во­дить­ся над объ­ек­та­ми са­мой раз­лич­ной при­ро­ды. Наи­бо­лее из­вест­ным при­ме­ром та­ко­го рас­ши­рен­но­го при­ме­не­ния ал­геб­ра­ич. ме­то­дов яв­ля­ет­ся век­тор­ная ал­геб­ра (см. Ли­ней­ная ал­геб­ра ) и её даль­ней­шее обоб­ще­ние – тен­зор­ная ал­геб­ра (см. Тен­зор­ное ис­чис­ле­ние ), став­шая од­ним из важ­ных средств совр. фи­зи­ки.

Источник

Разделы математики

Существует три официальных способа подразделения математики.

Содержание

Математика как специальность

Математика как специальность научных работников министерства науки и технологий Российской Федерации [1] подразделяется на научные специальности

Математика как учебная дисциплина

Математика как учебная дисциплина подразделяется в Российской Федерации на элементарную математику, изучаемую в средней школе, и образованную дисциплинами:

и высшую математику, изучаемую в ВУЗе. Дисциплины, входящие в состав высшей математики, варьируются в зависимости от специальности. Программа обучения по специальности математика [2] образована следующими учебными дисциплинами:

Знаком (ф) отмечены дисциплины, которые изучаются при обучении по специальности «физика».

Систематизация научных работ

Для систематизации научных работ используется Универсальная десятичная классификация 51.

Примечания

Полезное

Смотреть что такое «Разделы математики» в других словарях:

МАТЕМАТИКИ ИСТОРИЯ — Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера

История математики — История науки … Википедия

История математики в России — Данная статья часть обзора История математики. Содержание 1 Древность и средневековье 2 XVII век 3 … Википедия

Философия математики — учение о сущности математического знания и о базовых принципах математических доказательств, раздел философии науки; её можно также назвать «метаматематикой». Содержание 1 Возможность оснований математики 2 Литература … Википедия

История математики в Индии — Данная статья часть обзора История математики. Научные достижения индийской математики широки и многообразны. Уже в древние времена учёные Индии на своём, во многом оригинальном пути развития достигли высокого уровня математических знаний.… … Википедия

Институт математики и механики (НИИММ СПбГУ) — Научно исследовательский институт математики и механики имени академика В. И. Смирнова (НИИММ СПбГУ) структурное подразделение Санкт Петербургского государственного университета. Выполняет организационную роль, является материальной базой для… … Википедия

Математика — Евклид. Деталь «Афинской школы» Рафаэля Математика (от др. греч … Википедия

Дискретная математика — Дискретная математика область математики, занимающаяся изучением дискретных структур, которые возникают как в пределах самой математики, так и в её приложениях. К числу таких структур могут быть отнесены конечные группы, конечные графы, а… … Википедия

Математический анализ — У этого термина существуют и другие значения, см. Анализ. Математический анализ совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений. При столь общей… … Википедия

МЕТОД АКСИОМАТИЧЕСКИЙ — способ построения теории, при к ром в ее основу кладутся нек рые ее положения – аксиомы или постулаты, – из к рых все остальные положения теории (теоремы) выводятся путем рассуждений, называемых д о к а з а т е л ь с т в а м и. Правила, по к рым… … Философская энциклопедия

Источник

что включает в себя школьный предмет алгебра. istoriya vozniknoveniya. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-istoriya vozniknoveniya. картинка что включает в себя школьный предмет алгебра. картинка istoriya vozniknoveniya.

Классификация раздела

Алгебра является разделом математики. Она классифицируется на несколько видов:

что включает в себя школьный предмет алгебра. istoriya poyavleniya algebry. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-istoriya poyavleniya algebry. картинка что включает в себя школьный предмет алгебра. картинка istoriya poyavleniya algebry.

Каждый из этих разделов решает определенные задачи. При этом наука не стоит на месте и продолжает развитие.

Древняя история

Информация об истории возникновения алгебры связывается с древними рукописями. В те времена появилось понятие о натуральных числах, с которыми можно было проводить арифметические операции. Такая потребность возникла в связи с проведением астрономических и других видов расчетов. Изучая историю алгебры, становится понятно, что ее зарождение произошло в античной Греции.

что включает в себя школьный предмет алгебра. pridumal algebru. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-pridumal algebru. картинка что включает в себя школьный предмет алгебра. картинка pridumal algebru.

Происхождение науки связывается с мыслителем Диофантом. На сегодняшний день трудно сказать, кто придумал алгебру, но именно этим человеком были впервые введены буквенные обозначения чисел. На основании полученных сообщений известно, что Диофант знал о сокращении чисел и умел переносить члены из разных частей уравнения.

Информация об ученом содержится только в одном историческом труде, поэтому сказать точно, что математик создал алгебру, невозможно. К тому же этот источник дошел до нынешних времен не в полном объеме.

Продвижение на Восток

Достижения европейцев в области развития алгебры прервались после нашествий варварских племен. Кроме того, уменьшение к ней интереса произошло с открытием геометрии, которая стала считаться основным разделом математики. В этот период многие науки получили свое развитие на Востоке. Здесь продолжилось становление и алгебры. Поскольку все достижения Европы практически были забыты, создателем этой науки в мусульманском мире считается Ала-Хорезми. Произошло это после создания им трактата под названием «Учение об отношениях, перестановках и решениях». Некоторые ученые считают, что слово «алгебра» может вести свое начало от термина «алгоритм».

При этом существуют гипотезы, что мусульманский мир опирался в своих изучениях на европейские достижения. В некоторых их летописях присутствуют фамилии греческих последователей Диофанта, приводятся их высказывания относительно этой науки.

Вклад других стран

Основателем алгебры считается Ала-Хорезми, но особого развития она у арабов она получила. Однако именно они изобрели на своем языке арабские цифры, которые применяются в современном мире. Существенный вклад в развитие науки внесли представители и других стран. Кратко их достижения выражаются в следующем:

Таким образом, в развитии этого раздела принимали участие многие страны мира. Их исследовательские работы вносили общий вклад в становление алгебры.

что включает в себя школьный предмет алгебра. istoriya algebry. что включает в себя школьный предмет алгебра фото. что включает в себя школьный предмет алгебра-istoriya algebry. картинка что включает в себя школьный предмет алгебра. картинка istoriya algebry.

Под конец XVI века эта часть математики снова возвращается в Европу, откуда она взяла свое начало. Этому способствовало купечество, разъезжающее по всему свету и знакомившееся с математикой. Дальнейший толчок произошел после распада феодальной системы. Страны, ставшие на капиталистический путь развития, уже не могли обойтись без алгебраических действий.

Алгебра относится к наиболее интересным наукам, которые изучаются учениками школ и студентами вузов. Учащиеся постоянно пишут рефераты и готовят доклады на различные темы, относящиеся к этому разделу математики. В дальнейшем они зачитывают свои работы на уроках.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *