что важнее частота или латентность
Тайминги и частота оперативной памяти: кто важнее и влиятельней?
Привет, дорогие читатели моего блога! Среди юзеров существует одно распространенное заблуждение – мол, если прочитать пару статей по интересующей теме, сразу становятся понятны большинство вопросов и можно дать однозначный ответ: например, что кот Шредингера все-таки жив.
Естественно, найдутся адепты обеих точек зрения, которые будут доказывать друг другу, насколько сильно не прав оппонент.
К этой же категории относится вопрос: что важнее тайминги или частота оперативной памяти и от чего сильнее зависит производительность системы в целом?
Немного об этом я расскажу в сегодняшней публикации.
Однозначный ответ
Чтобы осознать всю глубину глубин этого вопроса, рекомендую вам для начала ознакомиться с публикацией о таймингах оперативной памяти. Сейчас же не буду растекаться мыслью по древу и скажу так: частота и тайминги не всегда находятся в обратной зависимости и параметры эти скорее перпендикулярные, чем параллельные.
Поэтому я могу разочаровать тех, кто ищет однозначного ответа на этот вопрос: его просто нет. Наблюдается влияние обеих параметров на быстродействие оперативки, а тесты иногда показывают противоречивые результаты.Если упростить, то частота, в первую очередь, влияет на быстродействие ОЗУ, а тайминги – на стабильность ее работы (чем ниже тайминги, тем надежнее такая система). Для домашнего компьютера, конечно же, важна скорость. Однако домашними компьютерами область применения оперативки не ограничивается, не так ли?
И если брать такую шайтан-машину, как например сервер (даже локальный), то обычно скоростью работы жертвуют, если это необходимо, в угоду надежности. Именно так – крах единственного сервера может на неопределенное время парализовать работу небольшой организации. А уж сколько интересного и нового узнает о себе админ от пользователей, которые не успели сохранить документы в сетевых папках!
Однако и в случае с домашним компом не все так однозначно. Для медиа центра или игрового ПК, конечно же, более важна скорость работы (особенно для игрового), поэтому ориентироваться следует как раз на частоту.
Естественно, не все юзеры используют компы только в этих целях – многие попутно еще балуются с Фотошопом или рендерят видео для YouTube (как по мне, в последнее время слишком многие).
Такой тяжеловесный софт требует от ПК, в первую очередь, стабильности, особенно программы, которые работают с видео и звуком. Согласитесь, обидно, когда после полуторачасового рендеринга ролика все неожиданно виснет, итоговый файл не сохраняется и приходится начинать все заново.
А если еще при этом пользователь забыл сохранить проект и приходится заново монтировать видеоряд – желание заниматься подобным пропадает напрочь.
Для компов, используемых в этих целях, рекомендуется не только мощный процессор, но и оперативка с малыми таймингами. Если необходимо, частотой можно пожертвовать.
Как это влияет на цену детали
При прочих равных параметрах DDR3 будет работать быстрее, чем DDR4 из-за особенностей архитектуры: тайминги у нее ниже. Более подробно о типах оперативной памяти DDR3 и DDR4, чем они отличаются и что лучше, вы можете почитать в одной из предыдущих публикаций.
И если сегодня частотой никого не удивишь – за адекватную цену можно приобрести вполне шуструю планку оперативки и даже комплект, то борьба за снижение таймингов ведется производителями комплектующих не прекращаясь. Из-за особенностей технологического процесса себестоимость планки с меньшими таймингами дороже.
Также учитывайте, что по себестоимости вам эти комплектующие, естественно, никто не продаст, и прежде чем осесть в слоте домашнего ПК, ОЗУ проходит через руки нескольких посредников. При этом каждый хочет получить дополнительную выгоду с юзера, готового платить за хорошие технические характеристики.
Что лучше – заплатить дороже за неиспользуемые возможности или сэкономить, но получить деталь без возможности выжать дополнительную мощность, сказать не берусь.
Рекомендация от меня лично
О том, как правильно подобрать оперативную память для компьютера, вы можете почитать в этой статье. От себя же в качестве оперативки для игрового ПК могу порекомендовать комплект Kingston DDR4-2666 HyperX Savage Black (HX426C13SB2K2/16) – две планки по 8 Гб.
Выглядят они круто: стильный радиатор черного или красного цвета с хищными линиями, при этом высота самой планки не будет мешать установке прочих комплектующих. Цена по сравнению с аналогичным товаром от конкурентов немного ниже.
На этом, дорогие читатели, я с вами прощаюсь, до завтра. Спасибо за внимание и не забываем подписаться на рассылку и поделиться новостью в социальных сетях.
Зависимость производительности в играх от частоты и таймингов оперативной памяти
Сегодня я попытаюсь разобраться, насколько важна производительность оперативной памяти для игрового ПК. Конечно, было бы прекрасно провести тестирование в 4х разрешениях в 20 играх и при 10 различных режимах памяти. Но подобное тестирование заняло бы у меня как минимум несколько месяцев, в течение которых все свободное время я посвящал бы тестам, и в итоге это тестирование никогда бы не было окончено. Поэтому осталось 5 режимов работы оперативной памяти, 7 игр и разрешение 1080p. Такое разрешение было выбрано, чтобы показать зависимость в условиях приближенных к реальным (хотя 1080p для GTX 1080 это даже маловато). Но не беспокойтесь, отдельные тесты в 720p тоже будут. Да еще какие!
реклама
Память я использую Geil Super Luce, которую подробно рассмотрел в предыдущей статье. Не самая лучшая память и не самый лучший выбор для тестов, но в свое оправдание могу сказать, что если взять более хорошую память, которая заведется на 2666 с меньшими таймингами, то само соотношение между памятью на разных частотах не изменится. Тем более, результаты явно покажут, что основные тайминги не есть самое главное для игровой производительности. Единственное, о чем жалею – невозможность проверить масштабируемость производительности при бОльших частотах памяти – выше 3400 моя память прыгнуть неспособна.
Перед проведением подробных тестов с замерами были проведены тесты записью видео и смонтированы в 2 ролика. В первом сравнивается производительность в следующих режимах 2133, 2666 XMP, 2666 optimized, 3200 optimized в разрешении 1080p в 9 играх.
Во втором сравниваются 2666 optimized и 3200 default в 720p
реклама
Именно в комментах к видео появилась идея с замерами 1% и 0.1%
Тест в каждой игре при каждом режиме памяти проводился 3 раза, результаты усреднялись. Если какой-то из результатов сильно отличался от остальных (в двух тестах 70-72, в третьем 60), его результаты отбрасывались, и тест проводился снова. Между каждым прогоном система перегружалась.
В первую очередь я отказался от частоты памяти 2133. Сегодня эта частота представляет лишь теоретический интерес. Все процессоры и матплаты поддерживают из коробки бОльшую частоту. А вот режимов с частотой 2666 будет 2 – стандартный XMP и с выжатыми таймингами. Частота 2666 интересна тем, что это максимальная частота для чипсетов, не поддерживающих разгон (на платформе Intel), и будет интересно посмотреть, на что способна память в таком режиме. Итак, память тестировалась в следующих режимах:
реклама
2666 XMP. Основные тайминги 16-18-18-36. Остальные тайминги Авто
2666 opt (Optimized). 12-16-16-28-1T, TRFC=280, TREFI=65535, остальные тайминги выставлены вручную (но не «добиты» до самых минимальных значений из-за недостаточности времени на тестирование стабильности).
3200 default. 15-19-19-34, tCWL=15, все остальные тайминги Авто.
3200 opt. 15-19-19-34-1T, TRFC=330, TREFI=65535, остальные тайминги выставлены вручную.
реклама
3400 opt. 16-20-20-34-1T, TRFC=350, TREFI=65535, остальные тайминги выставлены вручную.
Таблица с таймингами
Процессор во всех тестах Core i7 8700K на частоте 4,8 ГГц. Режим максимальной производительности включен как в Windows, так и в биос материнской платы.
Результаты в AIDA64 Memory Benchmark
2666 МГц очень сильно улучшает показатели после настройки таймингов и приближается к лидерам по времени задержки. Посмотрим, к чему это приведет в играх.
Тестовый стенд
ЦП: Core i7 8700K @ 4.8 GHz, северный мост @ 4.4 GHz
МП: Asus Z370-A, версия биос 0616
Кулер: Phanteks PH-TC14PE + Noctua NF-A15
ОЗУ: 2*8GB Geil Super Luce 2666
ВК: Zotac Geforce GTX 1080 AMP + Accelero Xtreme III @ 2000/10800
Корпус: Fractal Design Define R5 + 3x bequiet Silent Wings 2 140 mm
SSD: 2x Crucial M4 128GB, Crucial MX300 525GB, Kingfast 250GB
ОС: Windows 10 x64 LTSB
Версия драйвера ВК: 398.11
Для теста преимущественно отобраны игры, в которые я играю и знаю, в каких локациях производительность наименее зависит от видеокарты. Замеры среднего фпс и 1% и 0.1% фпс производились Fraps. К сожалению, пришлось отказаться от тестирования в Rise of Tomb Raider, т.к. Fraps в данной игре не работал. Также если не использовался бенчмарк, то не делалось никаких «прогревочных» пробежек по траектории, чтобы исключить лаги. Именно эти лаги мы сейчас и ищем.
Список игр
Assassin’s Creed Origins. Разрешение 1080p, пресет Ultra High. Используется встроенный бенчмарк, т.к. в данную игру я не играл. Тест производительности в Fraps запускался и останавливался вручную.
Fallout 4. Разрешение 1080p, пресет Ultra. Казалось бы, старая игра на древнейшем движке, но в данной игре есть место, где фпс зависит только от производительности оперативной памяти – верхушка завода Корвега. Фпс замерялся в течение 20 секунд при неподвижности персонажа. Тут я приведу только средний фпс. Также проведено тестирование при входе в Diamond City (13 cекунд).
Far Cry 5. Разрешение 1080p, пресет Ultra. Используется встроенный бенчмарк. Тест производительности в Fraps запускался и останавливался вручную.
Grand Theft Auto 5. Используется встроенный бенчмарк. Изначально я хотел использовать поездку по городу, но так и не смог научиться быстро ездить без аварий (в отличие от Watch Dogs 2). Настройки смотрите на скриншотах. Игра сама предложила подобные настройки при старте. Тест производительности в Fraps запускался вручную на 116 секунд в момент запуска последнего теста (и охватывал весь последний тест).
Kingdom Come Deliverance. Разрешение 1080p, пресет Very High. Поездка на быстрой лошади от мельницы до Ратае и через центральную улицу Ратае в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.
Witcher 3. Разрешение 1080p, пресет Ultra. Поездка на лошади через Новиград в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.
Watch Dogs 2. Разрешение 1080p, пресет Ультра. Поездка по центральной улице на быстром авто (одинаковом для каждого прогона) в течение 45 секунд. В отличие от видеосравнения обратно я уже не возвращаюсь, т.е. еду по дороге в одну сторону.
Результаты
Assassin’s Creed Origins 1080p
Различия между режимами очень небольшие. 2666 opt быстрее 3200 def.
Fallout 4 1080p
Рассмотрим пока спуск в Diamond City
Разница между лучшим и худшим результатом (avg и 1%) около 15%. 2666 опять опережает 3200 def.
Far Cry 5 1080p
Очень маленькая разница по среднему фпс, но вполне ощутимая по 1 и 0.1%. 2666 без оптимизаций отстает от остальных режимов, которые в свою очередь почти не отличаются между собой
Grand Theft Auto 5 1080p
С результатами GTA5 все не так однозначно. Средний фпс от прогона к прогону почти не отличался, а вот 1% и особенно 0.1% плавали в весьма широких пределах.
Kingdom Come Deliverance 1080p
В последней версии 1.5 (update: уже доступна 1.6) игра избавилась от фризов и просадок фпс при беге по городу на своих двоих. Но если скакать во весь опор на лошади, то фпс все еще провисает, хотя и меньше, чем на релизной версии. 2666 opt оказался гораздо ближе к оптимизированным 3200 и 3400, чем к 3200 без оптимизаций.
Watch Dogs 2 1080p
Стоп! Самая требовательная к скорости оперативной памяти игра показала минимальную разницу? Не может того быть! Может, если учесть настройки. В 1080p на Ultra настройках GTX 1080 почти постоянно работает на пределе, потому и такая небольшая разница.
720p
Тестирование в 720p я провел не во всех играх. Тестировать в 720p Fallout 4 и GTA 5 нет никакого смысла – в них и при 1080p видеокарта не загружена (это видно на видео). В Kingdom Come Deliverance видеокарта бОльшую часть времени загружена на максимум, но в моменты просадок фпс загрузка GPU падает. Итак, в 720p я протестирую Assassin’s Creed Origins, Witcher 3 и Far Cry 5. Watch Dogs 2 и завод Корвега из Fallout 4 оставлю напоследок.
Assassin’s Creed Origins 720p
Разница между режимами в 720p немного больше, чем в 1080p, но вновь ничего выдающегося.
Witcher 3 720p
Средний фпс растет, но 1% и 0.1% падает… Тестировать в 3200 opt я не стал – всего 2,3% разницы между 3400 и 2666 делает этот тест бессмыссленным.
Far Cry 5 720p
Всего 2 режима, т.к. их результаты показывают бессмысленность остального тестирования. Всего 3-4% разницы между 2666 и 3400 (+27% или +733 МГц частоты!) в 720p.
Watch Dogs 2 720p custom settings
А теперь немного хардкора. Снижаем разрешение до 720p, включаем пресет Ультра, а потом снижаем тени на Высоко и выключаем «Туман Сан-Франциско» и «Тень объектов в свете фар».
Помимо основных 5 режимов тестируем в следующих:
2666 XMP + TRFC, TREFI. Режим 2666 XMP кроме TRFC=280, TREFI=65535
2666 12-16-28-1T. Основные тайминги настроены вручную, все остальные на Авто
2666 opt no TRFC, TREFI. 2666 opt кроме TRFC и TREFI на Авто
2666 opt, subtim=auto. Основные тайминги, TRFC, TREFI настроены вручную, все остальные тайминги на Авто
2666 opt, TREFI=auto. 2666 opt кроме TREFI на Авто.
2666 opt, TRFC=auto. 2666 opt кроме TRFC на Авто.
2666 opt cl=14. 2666 opt кроме cl=14
2666 opt CR=2T. 2666 opt кроме Command Rate=2T
3267 opt. Тайминги аналогичны 3200 opt. Можитель процессора 47, шина 102.1
Каждый тест выполнялся 2 раза.
Наконец-то реальная разница между различными режимами! 2666 opt на 13-14% быстрее 2666 XMP, а 3400 opt в свою очередь на 10-11% быстрее 2666 opt, а разница между 2666 XMP и 3400 opt составляет 25%. Но есть одно но. Подобная разница получилась в одной игре, в разрешении 720p, с немного сниженными настройками, при использовании Core i7 8700K на частоте 4,8 ГГц и Geforce GTX 1080. Хочется тут вставить видео со святым отцом из «Очень страшного кино»
Еще из интересного можно отметить, что 2666 со всеми настроенными таймингами, кроме TRFC+TREFI, равен режиму 2666 XMP с настроенными TRFC+TREFI.
Повышение TRFC c 280 до дефолтных 467 (для частоты 2666) на производительность по сути не влияет.
Настройка только TRFC+TREFI после активации XMP профиля уже ощутимо улучшает производительность.
Ну и напоследок тест на заводе Корвега в Fallout 4. Особенность данной точки, что фпс тут не зависит ни от видеокарты, ни от процессора, а только от производительности оперативной памяти. Тест проводился всего 1 раз ввиду высокой повторяемости результатов. Приведен средний фпс.
Здесь разница меньше, чем в WD2 – всего 13,5% между лучшим и худшим результатом. Сами результаты позволяют оценить влияние каждого параметра на производительность.
Заключение
Через пару дней после начала подробных тестов я подумал, что занимаюсь чем-то бесполезным, и все основные ответы уже есть в записанных ранее видео. В общем-то, так и вышло. 2666 МГц с оптимизированными таймингами в подавляющем большинстве случаев не сильно уступает 3200 и 3400 (также с настроенными таймингами) и всегда превосходит 3200 с дефолтными таймингами. Основную роль в этом играет тайминг TREFI, но и остальные далеко небесполезны.
Ощутимую разницу удалось получить лишь в игре Watch Dogs 2 в разрешении 720p с немного сниженными настройками графики. Можно, конечно, было бы сказать, что со временем таких игр станет больше, но с момента выхода WD2 прошло более полутора лет, и новые игры показывают куда меньшую зависимость от производительности памяти.
Ссылка на архив со всеми результатами и скриншотами таймингов и результатов в AIDA64.
Почему вам стоит разгонять оперативную память (это легко!)
Любая программа на ПК использует для работы оперативную память, RAM. Ваша RAM работает на определённой скорости, заданной производителем, но несколько минут копания в BIOS могут вывести её за пределы стандартных спецификаций.
Да, скорость работы памяти имеет значение
Каждая запускаемая вами программа загружается в память с вашего SSD или жёсткого диска, скорость работы которых гораздо ниже, чем у памяти. После загрузки программа обычно остаётся в памяти некоторое время, и CPU получает к ней доступ по необходимости.
Улучшение скорости работы памяти может напрямую улучшить эффективность работы CPU в определённых ситуациях, хотя существует и точка насыщения, после которой CPU уже не в состоянии использовать память достаточно быстро. В повседневных задачах несколько дополнительных наносекунд не принесут вам особой пользы, но если вы занимаетесь обработкой больших массивов чисел, вам может помочь любое небольшое увеличение эффективности.
В играх скорость RAM может ощущаться гораздо сильнее. У каждого кадра есть только несколько миллисекунд на обработку кучи данных, поэтому если вы играете в игру, зависящую от скорости CPU (к примеру, CSGO), ускорение памяти может увеличить частоту кадров. Посмотрите на это измерение скорости от Linus Tech Tips:
Средняя частота кадров вырастает на несколько процентов с увеличением скорости RAM, когда большую часть работы делает CPU. Сильнее всего скорость памяти проявляется на минимальном показателе частоты; когда загрузка новой области или нового объекта должна произойти за один кадр, он будет прорисовываться дольше обычного, если будет ожидать загрузки данных в память. Это называется «микрозаикание», или «фриз», и игра может производить впечатление заторможенности даже при хороших показателях средней частоты кадров.
Разгонять память не страшно
Разгонять память совсем не так страшно, как разгонять CPU или GPU. Разгоняя CPU, вы должны следить за его охлаждением, за тем, справится ли охлаждение с увеличением частоты. Работать CPU или GPU могут гораздо громче, чем обычно [видимо, имеется в виду работа кулеров / прим. перев.].
Память не особенно перегревается, поэтому разгонять её довольно безопасно. Даже на нестабильных частотах худшее, что может произойти – это выявление ошибки при тесте на стабильность. Однако если вы проводите эти эксперименты на ноутбуке, вам нужно убедиться, что вы сможете очистить CMOS (восстановив настройки в BIOS по умолчанию), если что-то пойдёт не так.
Скорость, тайминги и CAS-латентность
Скорость работы памяти обычно измеряют в мегагерцах, МГц [так в оригинале; конечно, в герцах измеряют частоту, а частота влияет на скорость работы / прим. перев.]. Это мера тактовой частоты (сколько раз в секунду можно получить доступ в память), совпадающая с мерой скорости CPU. Стоковая частота DDR4 (современного типа памяти) обычно составляет 2133 МГц или 2400 МГц. Однако на самом деле это немного маркетинг: DDR обозначает «удвоенную скорость данных», то есть что память читает и пишет дважды за один такт. Так что на самом деле её скорость составляет 1200 МГц, или 2400 мегатактов в секунду.
Но большая часть DDR4 RAM работает на 3000 МГц, 3400 МГц или выше – благодаря XMP (Extreme Memory Profile). XMP, по сути, позволяет памяти сообщить системе: «Да, я знаю, что DDR4 должна поддерживать частоту до 2666 МГц, но почему бы тебе не ускорить меня?» Это ускорение из коробки, предварительно настроенное, проверенное и готовое к запуску. Оно достигается на уровне железа, при помощи чипа на памяти под названием Serial Presence Detect (SPD), поэтому на одну планку может быть только один профиль XMP:
У каждой планки памяти есть несколько встроенных вариантов тактовой частоты; стоковый вариант использует ту же самую систему SPD под названием JEDEC. Любая частота, превышающая скорость JEDEC, считается разгоном – то есть, XMP получается просто профилем JEDEC, разогнанным на заводе.
Тайминги RAM и CAS-латентность – два разных способа измерять скорость памяти. Они измеряют задержку (то, насколько быстро RAM реагирует на запросы). CAS-латентность – это мера того, сколько тактов проходит между командой READ, отправленной в память, и получением процессором ответа. Её обычно обозначают «CL» и указывают после частоты памяти, например: 3200 Mhz CL16.
Она обычно связана со скоростью работы памяти – чем больше скорость, тем больше CAS-латентность. Но CAS-латентность – лишь один из множества разных таймингов и таймеров, с которыми работает RAM; все остальные обычно просто называются таймингами памяти. Чем меньше тайминги, тем быстрее будет ваша память. Если вам захочется подробнее узнать о каждом из таймингов, прочитайте руководство от Gamers Nexus.
XMP не будет делать всё за вас
Вы можете купить планку памяти от G.Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.
Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх (да, это реально можно купить).
Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.
Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.
Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.
Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.
Как разгонять память
Самое сложное в разгоне памяти – определить, какие частоты и тайминги нужно использовать, поскольку в BIOS есть более 30 различных настроек. К счастью, четыре из них считаются «основными» таймингами, и их можно подсчитать при помощи программы Ryzen DRAM Calculator. Она предназначена для систем на базе AMD, но будет работать и для пользователей Intel, поскольку в основном предназначена для расчётов таймингов памяти, а не CPU.
Скачайте программу, введите скорость памяти и тип (если он вам неизвестен, то быстрый поиск серийного номера в Google может выдать вам результаты). Нажмите кнопку R-XMP для загрузки спецификаций, и нажмите Calculate SAFE [безопасный вариант] или Calculate FAST [быстрый вариант], чтобы получить новые тайминги.
Эти тайминги можно сравнить с прописанными спецификации при помощи кнопки Compare timings – тогда вы увидите, что на безопасных настройках всё немножечко подкручено, а основная CAS-латентность уменьшена на быстрых настройках. Будут ли у вас работать быстрые настройки – вопрос удачи, поскольку это зависит от конкретной планки, но у вас, вероятно, получится заставить память работать с ними в безопасном диапазоне напряжений.
Скриншот программы лучше отправить на другое устройство, поскольку вам понадобится редактировать настройки таймингов в BIOS компьютера. Затем, когда всё работает, вам нужно будет проверить стабильность разгона при помощи встроенного в калькулятор инструмента. Это процесс долгий, и вы можете прочитать наше руководство по разгону памяти, чтобы узнать все его подробности.