что быстрее транскрипция или репликация
Транскрипция и трансляция
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.
Транскрпиция (лат. transcriptio — переписывание)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.
Трансляция (от лат. translatio — перенос, перемещение)
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Сравнение репликации и транскрипции
Определение понятий
Репликация — это создание на родительских цепях ДНК их дочерних копий в виде новых цепей ДНК.
Транскрипция — это создание комплементарной информационной копии участка ДНК в виде молекулы РНК.
Оба процесса происходят на расцепленной молекуле ДНК на основе матричного синтеза с сохранением информационного соответствия между родительской цепью ДНК и дочерней молекулой, являющейся её информационной копией.
Сравнение процессов репликации и транскрипции
Интерфаза, синтетический период.
Мономеры дНТФ, ТТФ (дТТФ), т.е. энергонасыщенные дезоксирибо \ нуклеотид\три\фосфаты
Мономеры рНТФ, УТФ (рУТФ),
т.е. энергонасыщенные рибо \ нуклеотид\три\фосфаты
Реплицируется вся молекула ДНК
Транскрибируются отдельные участки ДНК
Мишень для инициации (молекулярный указатель): участки богатые парами А=Т.
Количество мишеней: 5, 50, 1000 п.н.
Количество мишеней: соответствует числу экспресси рован ных генов.
Факторы инициации репликации:
1. Белковые комплекс.
2. Ферментный комплекс.
Факторы инициации транскрипции:
1. Инициирующие белки, метящие мишени.
2. Вспомогательные белки.
1. Геликаза
2. Топоизомераза
3. ДНК-полимеразы
4. ДНК зависимая РНК полимераза (проймаза)
1. Геликаза (?)
2. РНК-полимераза.
3. Энхансеры
4. Селенжеры
Достижение реплицированного участка.
Терминация всей репликации.
Синтезированный участок РНК образует шпильку, заканчивающую процесс.
© Сазонов В.Ф., 2014. © kineziolog.bodhy.ru, 2014.
1 пользователь онлайн.
Приветствую вас на своем сайте, здесь вы можете найти много полезной информации (или что-то типа того)
САЗОНОВ Вячеслав Фёдорович
доцент кафедры биологии Рязанского государственного университета имени С.А. Есенина, кандидат биологических наук. Преподаватель вуза с 1978 года.
Your browser does not support canvas.
Реклама
Поиск
Притча наудачу:
На сайте введена регистрация через социальные сети, если вы хотите оставлять комментарии без потверждения, пожалуйста, воспользуйтесь именно этим типом аутентификации.
Если у вас уже есть аккаунт на сайте, вы можете привязать его к любой социальной сети? зайдя в настройки вашего аккаунта(«Мои учётные данные») ниже и воспользовавшись вкладкой «Подключение к социальным сетям».
После того, как вы зайдёте при помощи аккаунта в социальной сети, ваши возможности на сайте возрастут.
Поддержка сайта
Вы можете поддержать сайт не только добрым словом, но и материально!
Это очень поможет. IT-специалисты, следящие за сайтом день и ночь, хотя бы лишнюю чашечку кофе выпьют.
Для этого по своему желанию перечислите любую сумму на карту Сбербанка номер:
Разница между репликацией и транскрипцией
Главное отличие
Для роста организма необходимо деление клеток. Но для деления клетки ДНК клетки должна реплицироваться, чтобы дочерние клетки имели тот же генетический материал, что и их родительская клетка. Транскрипция — это процесс, при котором последовательность ДНК ферментативно копируется РНК-полимеразой с образованием РНК. Транскрипция — это в основном перенос генетической информации из ДНК в РНК. Оба процесса включают образование новых молекул нуклеиновой кислоты, которые могут быть ДНК или РНК. Однако и ДНК, и РНК играют разные роли: одна участвует в экспрессии генов, а другая — в делении клеток.
Репликация
Репликация — это процесс, связанный с делением клетки, который включает в себя копирование ДНК в клетке, так что будет два набора ДНК, каждый набор ДНК затем доступен для дочерней клетки. Процесс репликации происходит в S-фазе (фазе синтеза) клеточного цикла. При репликации сначала ДНК раскручивается, а затем спираль ДНК разделяется на две, и каждая цепь действует как матрица для ДНК дочерней клетки, в которой одна цепь ДНК образует двухцепочечную ДНК. Но перед этим требуется праймер РНК для начала репликации. Процесс репликации катализируется ферментами ДНК-полимеразы, которые воссоздают комплементарную последовательность ДНК, когда две цепи ДНК разделяются. Репликация ДНК включает копирование всего генома. Нуклеотид-трифосфат дезоксирибозы действует как сырье, которое соединяется с нуклеотидами одиночной цепи ДНК, которые служат матрицей через фосфодиэфирную связь. Следовательно, новая двухцепочечная спираль ДНК образуется в процессе репликации. Этот процесс помогает сохранить генетическую информацию для создания клеток и людей. Остальные продукты репликации не разрушаются и остаются в ядре.
Транскрипция
Транскрипция — это процесс, который включает копирование ДНК в РНК. Часть ДНК, которая кодирует ген, копируется в информационную РНК (мРНК), транспортную РНК (тРНК) или рибосомную РНК (рРНК). Процесс транскрипции происходит в фазах G1 и G2 клеточного цикла. В транскрипции первым шагом является раскручивание и разделение двух цепей ДНК. РНК-полимераза — фермент, который затем перемещается по длине цепи ДНК и начинает связывать нуклеотиды РНК с цепью ДНК, пока не образуется полная цепь РНК. Затем мРНК попадает в цитоплазму через ядерную пору ядра, где транслируется в белки. Транскрипция происходит только в одной цепи ДНК и позволяет копировать только определенное количество генов. Итак, однониточная РНК образуется из одного сегмента ДНК. Для транскрипции праймер не требуется. Процесс транскрипции помогает формировать ДНК-копии генов, которые можно использовать для немедленного производства белков. Остальные продукты процесса транскрипции деградируют, когда их функция заканчивается.
Биосинтез ДНК, РНК и белка. Репликация, транскрипция
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
БИОСИНТЕЗ ДНК, РНК И БЕЛКА
БИОСИНТЕЗ ДНК
Репликация — процесс удвоения ДНК (синтез ДНК на матрице ДНК).
4) потребность в праймере (затравке);
Ферменты и белки, участвующие в репликации (их > 40), объединены в единый комплекс — реплисому.
Хеликаза — раскручивает двойную спираль ДНК в репликационной вилке.
Топоизомераза — снимает напряжение, возникающее в репликационной вилке, и предотвращает обратное скручивание цепей.
Праймаза — синтезирует праймеры. Праймаза является РНК-полимеразой, поэтому образующиеся праймеры представляют собой олигорибонуклеотиды.
ДНК-полимераза — главный фермент процесса. Компоненты, необходимые для её работы: матрица, затравочный олигонуклеотид (праймер), субстраты (активированные нуклеотиды — дАТФ, дГТФ, дЦТФ, дТТФ), ионы магния. ДНК-полимераза катализирует реакцию:
Для образования фосфодиэфирной связи используется энергия макроэргического субстрата. Большинство ДНК-полимераз обладают способностью исправлять ошибки, допущенные при синтезе, путем отщепления неправильно присоединенного нуклеотида и замены его на нужный.
ДНК-лигаза — сшивает фрагменты, образующиеся после удаления праймеров и достройки ДНК.
После окончания репликации ДНК подвергается метилированию (защита от нуклеаз).
У прокариот есть три ДНК-полимеразы — ДНК-полимераза III (непосредственно ведет репликацию), ДНК-полимераза II (участвует в репарации), ДНК-полимераза I (отвечает за удаление праймеров и достройку на их месте ДНК).
БИОСИНТЕЗ РНК
Транскрипция — биосинтез РНК на матрице ДНК. В отличие от репликации, транскрипции подвергается не вся молекула ДНК. Единицей транскрипции является оперон (у прокариот) или транскриптон (у эукариот).
Инициация транскрипции: холофермент РНК-полимеразы связывается с матрицей в области промотора, вызывает локальное плавление ДНК и начинает синтез РНК. Одна из субъединиц фермента (σ-фактор) отвечает только за узнавание промотора и после инициации синтеза отсоединяется от других субъединиц.
Структура РНК-полимеразы прокариот
Элонгация: наращивание цепи РНК осуществляет коровая полимераза.
Терминация: в гене имеются терминирующие последовательности; белковый ρ (ро)-фактор вызывает отсоединение РНК-полимеразы от матрицы. Образовавшаяся молекула РНК у прокариот содержит информацию о нескольких белках (полицистронный транскрипт) и сразу же подвергается трансляции.
В ядре у эукариот имеется 3 типа РНК полимераз (I — синтезирует рРНК, II — для иРНК, III — для тРНК). Все виды РНК синтезируются в виде предшественников и нуждаются в процессинге (созревании). После процессинга РНК транспортируется из ядра в цитоплазму.
Созревание тРНК. От предшественника тРНК отщепляются дополнительные олигонуклеотиды на 3’- и 5’- концах, вырезаются интроны, достраивается акцепторный участок (ЦЦА), формируется петля антикодона, проводится модификация нуклеотидов (образуются псевдоуридин, дигидроуридин и т. п.).
Созревание рРНК. рРНК синтезируется в виде крупных предшественников, из которых затем удаляются интроны, молекулы разрезаются на фрагменты разного размера, метилируются, объединяются с белками (образуются малая и большая субъединицы рибосом).
БИОСИНТЕЗ БЕЛКА
Трансляция — биосинтез белка на матрице иРНК. Участники трансляции: иРНК, рибосомы, белковые факторы инициации, элонгации и терминации, ГТФ, аминоацил-тРНК.
Последовательность нуклеотидов иРНК определяет последовательность включения аминокислот в синтезируемый белок. При этом одну аминокислоту кодирует последовательность из трех нуклеотидов (триплет, кодон). Существует 4 3 = 64 кодона (3 из них не кодируют аминокислоты — бессмысленные или нонсенс-кодоны). Общий набор кодонов составляет генетический код. Свойства генетического кода: триплетность; специфичность (1 кодон —
1 аминокислота); вырожденность (или избыточность, 61 кодон для 20 аминокислот); однонаправленность; неперекрываемость; отсутствие знаков препинания; универсальность.
Роль тРНК в биосинтезе белка: 1) транспорт аминокислот на рибосомы; 2) адапторная функция, т. е. тРНК является посредником при переводе с языка нуклеиновых кислот (последовательность нуклеотидов) на язык белков (последовательность аминокислот). Адапторная функция осуществляется благодаря наличию в структуре тРНК акцепторного участка для аминокислоты и антикодона для связи с иРНК.
Рекогниция — процесс узнавания аминокислотой своей тРНК. Специфичность связывания обеспечивает фермент АРСаза (аминоацил-тРНК-синтетаза), который катализирует
Собственно трансляция проходит в три этапа: инициация, элонгация и терминация.
Элонгация: в аминоацильный участок поступает следующая аминоацил-тРНК. Фермент пептидилтрансфераза образует пептидную связь между активированной карбо-ксильной группой первой аминокислоты и аминогруппой второй аминокислоты. Образованный при этом дипептид «зависает» в аминоацильном центре. Затем с помощью транслоказы и энергии ГТФ рибосома перемещается по иРНК на один кодон, аминоацильный участок освобождается, туда поступает новая аминокислота.
Терминация наступает тогда, когда в аминоацильном участке оказывается один из терминирующих (нонсенс) кодонов. К таким кодонам присоединяются специальные белки (рилизинг-факторы), которые высвобождают синтезированный пептид и вызывают диссоциацию субъединиц рибосомы.
Многие белки синтезируются в неактивном виде (в виде предшественников) и после схождения с рибосом подвергаются постсинтетической модификации. Виды модификации белков:
Регуляция биосинтеза белка в клетке
Синтез белка в клетке можно регулировать на этапе транскрипции, созревания иРНК, транспорта ее из ядра в цитоплазму, изменяя стабильность иРНК, в процессе трансляции и посттрансляционной модификации. Регуляция на самых ранних этапах (на уровне экспрессии генов) является наиболее выгодной и потому широко используется.
Примером регуляции экспрессии генов является работа lac-оперона у E. coli. Lac-опе-рон содержит 3 структурных гена ферментов, участвующих в метаболизме лактозы. В отсутствие лактозы оперон заблокирован белком репрессором.
В присутствии индуктора (лактозы) репрессор меняет свою конформацию и отсоединяется от ДНК. Однако если в этот момент в среде имеется глюкоза (более доступный источник энергии), транскрипция не идет. В том случае, если глюкоза отсутствует, в клетке увеличивается уровень цАМФ (сигнал «голода») и цАМФ в комплексе со специальным белком (catabolite activator protein) связывается с промотором. Только в присутствии этого белка РНК-полимераза может образовать прочную связь с промотором и начать транскрипцию.
Белковые факторы, которые способствуют связыванию РНК-полимеразы с промотором, называются факторами транскрипции.
Регуляторная часть генов эукариот устроена более сложно. Имеются энхансеры (элементы, усиливающие транскрипцию), сайленсеры (ослабляющие), адапторные элементы. Факторы транскрипции могут связываться с любым из этих элементов, тем самым регулировать функции генов. В качестве индукторов биосинтеза белка на генетическом уровне могут выступать не только субстраты (лактоза для лактазы), но и стероидные гормоны, витамин Д, тиреоидные гормоны, ионы металлов и др.
Что быстрее транскрипция или репликация
§ 15. ПЕРЕНОС ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ В КЛЕТКЕ:
РЕПЛИКАЦИЯ, ТРАНСКРИПЦИЯ
В процессе размножения клеток генетическая информация передается от одного поколения клеток другому. При этом все клетки получают одинаковую информацию. Это, возможно, вследствие того, что перед делением клетки осуществляется репликация (удвоение) ДНК, в результате образуются две идентичные молекулы ДНК, которые и передаются потомкам. В структуре ДНК заложена способность этой молекулы к копированию.
Закодированная в ДНК генетическая информация реализуется в результате экспрессии генов. Экспрессия генов включает транскрипцию (копирование информации с ДНК на синтезируемую РНК) и последующую трансляцию (синтез на матрице РНК соответствующего белка).
Возможен поток информации и в направлении от РНК к ДНК, этот процесс носит название обратная транскрипция. В то же время информация не передается от белков нуклеиновым кислотам. Однако следует отметить, что белки играют важную роль в осуществлении процессов передачи информации, как между нуклеиновыми кислотами, так и от нуклеиновых кислот к белкам.
Описанные информационные взаимоотношения между ДНК, РНК и белками могут быть представлены в виде схемы:
Рассмотрим более подробно процессы репликации, транскрипции и трансляции.
Интересно знать! В 1982 году Р.Д.Пальмитер с коллегами опубликовали фотографию, на которой рядом сидели две мыши. Одна из них была трансгенной, в ее ДНК встроили ген гормона роста крысы, другая была обычной мышкой. Трансгенная мышь в сравнении с обычной имела в два раза большие размеры. Причиной тому была экспрессия гена гормона роста, в результате которой у мыши синтезировался соответствующий гормон, который и определил ее гигантские размеры.
Рис. 44. В результате репликации образуются две дочерние молекулы ДНК.
Репликация ДНК
В основе репликации, или удвоения, ДНК лежит принцип комплементарности. Репликация начинается с разделения цепей, каждая из которых становится матрицей, определяющей нуклеотидную последовательность новой комплементарной цепи (рис. 44). В результате репликации образуются две дочерние молекулы ДНК, нуклеотидные последовательности которых идентичны между собой и с материнской молекулой ДНК. При этом две дочерние молекулы ДНК содержат одну вновь синтезированную (дочернюю) и одну материнскую цепи ДНК.
Субстратом для синтеза ДНК являются дезоксинуклеотид-5’-трифосфаты: дАТФ, дГТФ, дЦТФ и дТТФ. Уравнение этой реакции в простейшей виде выглядит так:
Данную реакцию катализирует фермент ДНК-полимераза. Она последовательно добавляет нуклеотиды к 3’-концу полинуклеотидной цепи. Следовательно, синтез новой цепи происходит в направлении от 5’-конца к 3’-концу. ДНК-полимераза может только наращивать цепь ДНК, начать же синтез ДНК с нуля она не может, т.е. для ее работы требуется цепь-затравка. ДНК-полимераза способна удлинять цепь только в присутствии цепи, играющей роль матрицы (рис. 45.). Нуклеотиды присоединяются к цепи-затравке в соответствии с принципом комплементарности, напротив аденина всегда будет встроен тимин, а напротив гуанина – цитозин.
Итогом репликации является образование двух дочерних молекул ДНК, являющихся точными копиями материнской. Благодаря этому возможна передача идентичной генетической информации от клетки к клетке.
Рис. 45. ДНК-полимераза наращивает цепь в направлении 5’ 3’.
Для этого ей нужны матрица и затравка
Транскрипция
В результате транскрипции происходит синтез цепи РНК, нуклеотидная последовательность которой комплементарна одной из цепей ДНК; при этом генетическая информация, содержащаяся в ДНК, передается молекуле РНК. В результате транскрипции образуются три класса РНК: иРНК, тРНК, рРНК. Поскольку в основе транскрипции лежит принцип комплементарности, этот процесс имеет определенное сходство с репликацией. Однако между ними существует и важное различие. Если в процессе репликации копируется вся молекула ДНК, то при транскрипции транскрибируется только ее незначительная часть. Катализирует синтез РНК фермент РНК-полимераза. Транскрибируемый участок ДНК ограничен со стороны 3’-конца промотором, – участком с которым связывается РНК-полимераза, со стороны 5’-конца – терминатором – участком, в котором прерывается синтез РНК. Последовательность ДНК, ограниченная промотором и терминатором, представляет собой единицу транскрипции – транскриптон (рис. 46).
Рис. 46. Транскриптон
РНК-полимераза в качестве субстратов для синтеза РНК использует рибонуклеозид-5’-фосфаты (АТФ, ГТФ, ЦТФ и УТФ). Она удлиняет цепь, присоединяя нуклеотиды к 3’-концу, т.е. так же, как и ДНК-полимераза, наращивает цепь в направлении5’®3’. Этот фермент требует для своей работы в качестве матрицы одну из цепей ДНК. Из двух цепей ДНК транскрибируется только одна. В отличие от ДНК-полимеразы, РНК-полимераза не нуждается в затравке. Удлинение цепи РНК описывается уравнением:
Нуклеотиды присоединяются к цепи в соответствии с принципом комплементарности. Напротив аденина матричной цепи ДНК в растущую цепь РНК всегда будет встроен урацил, напротив гуанина – цитозин, напротив тимина – аденин и напротив цитозина – гуанин соответственно. Т.о., образовавшаяся в результате транскрипции РНК комплементарна матричной цепи ДНК (рис. 47).
Рис. 47. Образовавшаяся в результате транскрипции РНК комплементарна матричной цепи ДНК
В процессе транскрипции выделяют три стадии: инициацию, элонгацию и терминацию. На стадии инициации РНК-полимераза, взаимодействуя с промотором, вызывает расхождение цепей ДНК и начинает синтез молекулы РНК. В ходе элонгации новосинтезированная цепь РНК образует (за счет спаривания ее оснований с основаниями матричной цепи ДНК) короткие отрезки гибридной двойной спирали ДНК – РНК, которые необходимы для правильного считывания цепи ДНК. Как только РНК-полимераза достигнет терминирующих последовательностей, запускается последняя стадия – терминация. По ее завершении происходит освобождение вновь синтезированной цепи РНК (рис. 48).
Рис. 48. Стадии транскрипции
Синтезированные молекулы РНК могут подвергаться посттранскрипционным ковалентным модификациям, так называемому процессингу (созреванию). Наиболее ярко процессинг выражен у эукариот.
Процессинг РНК
Рассмотрим процессинг иРНК эукариот.
иРНК синтезируется в виде предшественника пре-иРНК. Модификация пре-иРНК начинается на стадии элонгации, в это время происходит кэпирование 5’-конца. Остаток ГТФ присоединяется своим 5’-концом к 5’-концу пре-иРНК с образованием так называемого кэпа. После завершения транскрипции к 3’-концу присоединяется полиА-последовательность, состоящая из 100 – 200 последовательно соединенных адениновых нуклеотидов. В составе пре-иРНК могут содержаться интроны и экзоны. Интроны при созревании РНК вырезаются, концы экзонов соединяются друг с другом. Этот процесс называется сплайсингом. В результате сплайсинга зрелая молекула иРНК становится приблизительно в 4 раза короче пре-иРНК. Этапы процессинга иРНК представлены на рис. 49. Процессинг для иРНК прокариот не характерен.
Рис. 49. Процессинг иРНК
рРНК и тРНК также синтезируются в виде более длинных предшественников, которые затем расщепляются и модифицируются. У прокариот рРНК представлены тремя молекулами: 16S-рРНК, 23S-рРНК и 5S-рРНК, у эукариот – четырьмя: 18S-рРНК, 28S-рРНК, 5,8S-рРНК и 5S-рРНК. рРНК как прокариот, так и эукариот образуются из предшественников – пре-рРНК. Предшественник расщепляется, образуя индивидуальные рРНК (рис. 50). рРНК и тРНК не содержат кэпа и полиА-последовательности. У эукариот рРНК и тРНК могут подвергаться сплайсингу. В процессе созревания у некоторых предшественников тРНК наряду с удалением концевых последовательностей может происходить и присоединение нуклеотидных последовательностей, играющих важную роль в их функционировании.
Рис.50. Процессинг рРНК.
Обратная транскрипция
Синтез ДНК при использовании в качестве матрицы РНК носит название обратной транскрипции. Данный процесс катализирует фермент обратная транскриптаза или ревертаза. Существование обратных транскриптаз в составе РНК-содержащих вирусов было показано Г.Темином и Д. Балтимором. Обнаружение обратной транскриптазы позволило ответить на вопрос: как генетическая информация РНК-содержащих вирусов может включиться в ДНК клетки-хозяина. Процесс обратной транскрипции, катализируемый ревертазой, и последующая интеграция генетического материала в геном клетки хозяина представлены на рис. 51. В процессе обратной транскрипции вначале образуется дуплекс РНК – ДНК, затем РНК в составе этого дуплекса разрушается, синтезированная цепь ДНК далее служит матрицей для синтеза второй цепи ДНК. На заключительной стадии происходит интеграция ДНК, синтезированной в результате обратной транскрипции, в ДНК клетки-хозяина. Обратные транскриптазы способны синтезировать ДНК, комплементарную самым различным РНК. Благодаря этой особенности ревертаза нашла широкое применение в научных исследованиях. С помощью обратной транскриптазы можно получить, например, искусственный ген, используя в качестве матрицы иРНК.
- что быстрее трамвай или троллейбус
- что быстрее туризмо или инфернус