что быстрее испарится вода или спирт
почему Спирт испаряются быстрей чем вода. почему
се знают, что если развесить выстиранное белье, то оно высохнет. И так же очевидно, что мокрый тротуар после дождя обязательно станет сухим.
Испарение — это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа. Все жидкости испаряются с разной скоростью. Спирт, аммиак и керосин испаряются быстрей воды.
Есть две силы, воздействующие на молекулы, из которых состоят все вещества. Первая — это сцепление, которое удерживает их между собой. Другая — тепловое движение молекул, которое заставляет их разлетаться в разные стороны. Когда эти две силы уравновешены, мы имеем жидкость.
На поверхности жидкости ее молекулы находятся в движении. Эти молекулы, которые движутся быстрей соседних, находящихся внизу, могут улетать в воздух, преодолевая силы сцепления. Это и является испарением.
Когда жидкость подогрета, испарение происходит быстрей. Так происходит потому, что в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость. В закрытом сосуде испарение отсутствует. Так случается потому, что количество молекул в паре достигает определенного уровня. Тогда количество молекул, покидающих жидкость, будет равно количеству молекул, вернувшихся в нее. Когда это происходит, мы можем сказать, что пар достиг точки насыщения.
Когда воздух над жидкостью движется, скорость испарения увеличивается. Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испарится быстрей, чем в высоком кувшине.
Испарение и конденсация
4. Выясним, от чего зависит скорость испарения жидкости. Проделаем опыт. Капнем на стеклянную поверхность воду, спирт и растительное масло. Проследим, какая жидкость испарится первой. Заметим, что раньше всех испарится спирт, затем вода, позже — подсолнечное масло. Значит, скорость испарения зависит от рода жидкости.
Вы хорошо знаете, что на ветру бельё сохнет быстрее, чем при отсутствии ветра. Это происходит потому, что ветер уносит вылетевшие из жидкости молекулы, освобождая место для других. Понятно, почему вы дуете на ранку после того, как её смажут иодом и вы почувствуете жжение. Спирт, в котором растворён иод, при этом будет быстрее испаряться. Таким образом, скорость испарения зависит от движения воздуха над поверхностью жидкости.
Как вы думаете, из какого сосуда — стакана или блюдца — вода испарится быстрее, если масса воды будет одинаковой? Опыт показывает, что из блюдца. Это объясняется тем, что площадь поверхности воды в блюдце больше, чем в стакане, следовательно, большее число молекул сможет оказаться на поверхности и, преодолев силы притяжения, вылететь с неё. Значит, скорость испарения зависит от площади поверхности жидкости.
Вы, конечно, замечали, что в жаркий летний день лужи высыхают быстрее, чем в холодный осенний. Очевидно, что с повышением температуры скорость испарения возрастает. И это неудивительно, поскольку чем выше температура жидкости, тем больше скорости движения её молекул и соответственно их кинетическая энергия. А раз так, то большее число молекул способно преодолеть силы притяжения и выйти за пределы поверхности жидкости. Таким образом, скорость испарения зависит от температуры жидкости.
5. Выясним, что происходит с жидкостью в сосуде при испарении. Проделаем опыт. Возьмём термометр, обмотаем его конец тряпочкой, смоченной водой, а лучше одеколоном. Заметим, что столбик жидкости в термометре начнёт опускаться. Это свидетельствует об уменьшении температуры жидкости при испарении. Например, если на руку капнуть одеколон или эфир, то рука начнёт ощущать холод.
Объясняется этот факт следующим образом. При испарении жидкость покидают молекулы, обладающие наибольшей энергией, поэтому внутренняя энергия оставшейся части жидкости уменьшается. Следовательно, уменьшается и температура жидкости.
6. Все вы наблюдали вечером после жаркого летнего дня выпадение росы. Это водяной пар, содержащийся в воздухе, при охлаждении превращается в жидкость, и капельки воды оседают на листьях и траве.
Процесс превращения вещества из газообразного состояния в жидкое называют конденсацией.
Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы возвратятся в жидкость.
Если процесс испарения идёт быстрее, чем процесс конденсации, то масса жидкости в сосуде уменьшается. Это происходит, когда сосуд открыт.
Испарение и конденсация воды. Несколько практических советов
Вода – одно из самых распространенных и вместе с тем самое удивительное вещество на Земле. Вода находится повсюду: и вокруг нас, и внутри нас. Мировой океан, состоящий из воды, покрывает ¾ поверхности земного шара. Любой живой организм, будь то растение, животное или человек, содержит воду. Человек более чем на 70% состоит из воды. Именно вода – одна из главнейших причин возникновения жизни на Земле. Как и любое вещество, вода может находиться в различных состояниях или, как говорят физики, ‑ агрегатных состояниях вещества: твердом, жидком и газообразном. При этом постоянно происходят переходы из одного состояния в другое – так называемые фазовые переходы. Одним из таких переходов является испарение, обратный процесс называется конденсацией. Давайте попробуем разобраться, как можно использовать это физическое явление, и что нужно знать об этом.
В процессе испарения вода переходит из жидкого состояния в газообразное, при этом образуется водяной пар. Это происходит при любой температуре, когда вода находится в жидком состоянии (0 0 – 100 0 С). Однако скорость испарения не всегда одинаковая и зависит от ряда факторов: от температуры воды, от площади поверхности воды, от влажности воздуха и от наличия ветра. Чем выше температура воды, тем быстрее двигаются ее молекулы и тем интенсивнее происходит испарение. Чем больше площадь поверхности воды, а испарение происходит исключительно на поверхности, тем больше молекул воды смогут перейти из жидкого состояния в газообразное, что увеличит скорость испарения. Чем больше содержание водяных паров в воздухе, то есть чем выше влажность воздуха, тем менее интенсивно происходит испарение. Кроме того, чем больше скорость удаления молекул водяного пара от поверхности воды, то есть чем больше скорость ветра, тем больше скорость испарения воды. Также следует отметить, что в процессе испарения воду покидают самые быстрые молекулы, поэтому средняя скорость молекул, а, значит, и температура воды уменьшаются.
Учитывая описанные закономерности, важно обратить внимание на следующее. Очень горячий чай пить не безвредно. Однако чтобы его заварить, требуется вода с температурой, близкой к температуре кипения (100 0 С). При этом вода активно испаряется: над чашкой с чаем хорошо видны поднимающиеся струйки водяного пара. Чтобы быстро охладить чай и сделать чаепитие комфортным, нужно увеличить скорость испарения, и охлаждение чая произойдет существенно быстрее. Первый способ известен всем с детства: если подуть на чай и тем самым удалить молекулы водяного пара и нагретый воздух от поверхности, то скорость испарения и теплопередачи увеличится, и чай быстрее остынет. Второй способ часто использовали в старину: переливали чай из чашки в блюдце и тем самым увеличивали площадь поверхности в несколько раз, пропорционально увеличивая скорость испарения и теплопередачи, благодаря чему чай быстро остывал до комфортной температуры.
Охлаждение воды при испарении хорошо ощущается, когда летом выходишь из открытого водоема после купания. С влажной кожей находиться прохладнее. Поэтому чтобы не переохладиться и не заболеть, нужно обтереться полотенцем, тем самым остановить охлаждение, вызванное испарением воды. Однако это свойство воды – охлаждаться при испарении – иногда полезно использовать для того, чтобы немного понизить высокую температуру заболевшему человеку и тем самым облегчить его самочувствие при помощи компрессов или обтираний.
При конденсации вода из газообразного состояния переходит в жидкое с выделением тепловой энергии. Это важно помнить, находясь вблизи кипящего чайника. Струя водяного пара, выходящая из его носика, имеет высокую температуру (около 100 0 С). Кроме того, соприкасаясь с кожей человека, водяной пар конденсируется, тем самым увеличивая неблагоприятное термическое воздействие, что может привести к болезненным ожогам.
Также полезно знать, что в воздухе всегда содержится какое-то количество водяных паров. И чем выше температура воздуха, тем больше водяных паров может быть в атмосфере. Поэтому летом при заметном понижении температуры в ночное время часть водяных паров конденсируется и выпадает в виде росы. Если утром пройти босиком по траве, то она будет влажной и холодной на ощупь, так как уже активно испаряется благодаря утреннему солнцу. Похожая ситуация происходит, если зимой войти с улицы в теплое помещение в очках, ‑ очки будут запотевать, так как водяные пары, находящиеся в воздухе, будут конденсироваться на холодной поверхности стекол. Чтобы это предотвратить, можно воспользоваться обычным мылом и нанести на стеклах сетку с шагом около 1 см, а затем растереть мыло мягкой тканью, не спеша и не сильно нажимая. Стекла очков покроются тонкой невидимой пленкой и не будут запотевать.
Водяной пар, находящийся в воздухе, можно с большой точностью считать идеальным газом и рассчитывать параметры его состояния при помощи уравнения Менделеева-Клапейрона. Предположим, что температура воздуха днем при нормальном атмосферном давлении составляет 30 0 С, а влажность воздуха 50%. Найдем, до какой температуры должен охладиться воздух ночью, чтобы выпала роса. При этом будем считать, что содержание (плотность) водяных паров в воздухе не изменялось.
По предложенному методу мы предлагаем вам решить задачу:
В закрытой банке объемом 2 л находится воздух, влажность которого составляет 80%, а температура 25 0 С. Банку поставили в холодильник, внутри которого температура 6 0 С. Какая масса воды выпадет в виде росы после наступления теплового равновесия.
Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы
Испарение. Насыщенный и ненасыщенный пар
Содержание
Вещества могут переходить из твердого состояния в жидкое, а из жидкого в газообразное. При том они поглощают энергию. Вы уже познакомились с первым переходом – процессом плавления. Теперь мы будем рассматривать следующий переход вещества из одного состояния в другое – превращение жидкости в газ.
Повседневные наблюдения позволяют сказать, что количество жидкости, находящейся в открытом сосуде, со временем уменьшается. Но жидкость не может просто так исчезнуть. Что же с ней происходит? Она превращается в пар.
Парообразование – это явление превращения жидкости в пар.
Есть два способа превращения жидкости в газ:
В данном уроке мы рассмотрим первый способ – испарение.
Испарение
Испарение – это парообразование, происходящее с поверхности жидкости.
Молекулы жидкости находятся в беспрерывном движении. Движутся они с разными скоростями.
Иногда достаточно “быстрые молекулы” могут оказаться у поверхности жидкости. Тогда они преодолевают притяжение соседних молекул и вылетают из жидкости. Такие молекулы образуют над жидкостью пар.
Другие молекулы при движении соударяются друг с другом и со стенками сосуда. При этом меняются их скорости. Так образуются новые “быстрые” молекулы, способные вылететь из жидкости.
Этот процесс все время продолжается, поэтому жидкость испаряется постепенно.
Скорость испарения и род жидкости
Очевидно, что жидкости испаряются не всегда одинаково. Когда-то быстрее, когда-то медленнее. Скорость испарения зависит от определенных причин.
Наполним два одинаковых открытых сосуда водой и эфиром одинаковой массы (рисунок 1).
Мы заметим, что эфир будет испаряться намного быстрее, чем вода. Мы можем фиксировать эти изменения, взвешивания воду или отмечая ее объем.
Скорость испарения зависит от рода жидкости.
Быстрее будет испаряться та жидкость, в которой молекулы притягиваются друг к другу с меньшей силой. В таких жидкостях большему количеству молекул проще преодолеть сопротивление и вылететь.
Скорость испарения и температура
В жидкостях всегда имеется некоторое число быстро движущихся молекул. Значит,
Испарение происходит при любой температуре.
Наполним два одинаковых сосуда водой одинаковой массы. Но в один сосуд нальем воду комнатной температуры, а в другой – подогретую до высокой температуры (рисунок 2).
Наблюдения покажут, что количество подогретой жидкости в сосуде уменьшилось быстрее, чем жидкости комнатной температуры.
Испарение происходит тем быстрее, чем выше температура жидкости.
При увеличении температуры жидкости, увеличивается ее внутренняя энергия. При этом увеличивается средняя кинетическая энергия молекул и средняя скорость их движения. Значит, чем выше температура жидкости, тем больше в ней быстро движущихся молекул, которыe способны вылететь с поверхности.
Например, после дождя на улице остаются лужи. Дождь может пройти и холодной осенью, и жарким летом. Когда лужи высыхают быстрее? Конечно же летом, когда на улице более высокая температура.
Скорость испарения и площадь поверхности жидкости
Возьмем два сосуда одинакового объема, но разной формы. Один широкий, а второй – узкий (рисунок 3). Заполним их водой одной и той же массы.
Наблюдения покажут, что вода из широкого сосуда будет испаряться быстрее, чем из узкого.
Скорость испарения жидкости зависит от площади ее поверхности.
Испарение происходит с поверхности жидкости. Значит, чем больше поверхность, тем большее количество молекул одновременно вылетает в воздух.
Зачем мы развешиваем белье после стирки? Чтобы оно быстрее высохло. Ведь в скомканном состоянии его площадь намного меньше, чем в расправленном виде.
Скорость испарения и ветер
Быстро движущиеся молекулы вылетают из жидкости, образуя пар. Одновременно с этим происходит обратный процесс. Некоторые молекулы пара, беспорядочно двигаясь над поверхностью жидкости, снова возвращаются в нее.
Очевидно, что если уменьшить количество возвращающихся в жидкость молекул, скорость испарения увеличится. Количество жидкости будет уменьшаться быстрее. Это возможно при наличии ветра (рисунок 4).
При наличии ветра испарение жидкости происходит быстрее.
Ветер уносит молекулы пара, не давая их части вернуться обратно в жидкость.
Примером может послужить использование фена для волос. Создавая такой “искусственный ветер”, мы увеличиваем скорость испарения, что позволяет достаточно быстро высушить волосы.
Насыщенный пар и динамическое равновесие между паром и жидкостью
Рассмотрим испарение жидкости в закрытом сосуде (рисунок 5).
Вначале испарение будет идти точно так же как и в открытом сосуде: количество вылетающих молекул будет больше количества молекул, которые возвращаются обратно в жидкость. Но они не могут улететь в окружающую среду, поэтому плотность пара над поверхностью жидкости будет постепенно увеличиваться.
С увеличением плотности пара будет увеличиваться и число молекул, возвращающихся обратно в жидкость. Постепенно, число молекул, вылетающих из жидкости, станет равным числу молекул, возвращающихся в нее. Число молекул пара над жидкостью станет постоянным – наступит динамическое равновесие между паром и жидкостью.
В таком случае пар называют насыщенным.
Насыщенный пар – это пар, находящийся в динамическим равновесии со своей жидкостью.
При динамическом равновесии масса жидкости в закрытом сосуде несмотря на испарение не изменяется.
Ненасыщенный пар
Если в пространстве, которое окружает рассматриваемую жидкость и содержит ее пары, может происходить дальнейшее испарение, то пар, находящийся в этом пространстве называют ненасыщенным.
Ненасыщенный пар – это пар, не находящийся в состоянии равновесия со своей жидкостью.
Так, в открытом сосуде масса жидкости будет постепенно уменьшаться. Большинство молекул пара будет оставаться в воздухе, не возвращаясь обратно в жидкость.
Испарение твердых тел
Некоторые твёрдые тела тоже могут испаряться. Испарение твердых тел называют возгонкой (или сублимацией).
Например, таким свойством обладает лёд. Это объясняет то, что белье после стирки высыхает и на зимнем морозе. Нафталин испаряется при комнатной температуре, поэтому мы чувствуем его запах.
Запах создается молекулами, оторвавшимися от вещества и достигшими нашего носа. Поэтому говорят, что всякое пахнущее твёрдое вещество возгоняется в значительной степени.
На самом деле испаряются все твердые тела (даже железо). Но плотность насыщенного пара оказывается настолько мала, что обнаружить его очень сложно, иногда практически невозможно.
Парообразование
Почему исчезают лужи после дождя? Вода постепенно испаряется. А почему пахнет мыло? Ответ тот же: мыло испаряется, и его частицы попадают к нам в нос. Испарение с поверхности твердых и жидких веществ, а также кипение жидкостей в физике имеют общее название – парообразование. Пронаблюдаем за ним на опытах.
Опыт 1. В две мензурки нальем поровну воды. Воду из левой перельем в тарелку. Через несколько дней окажется, что в ней вода испарилась полностью, а в мензурке – лишь частично. Почему?
Испаряться могут только те молекулы, которые находятся вблизи поверхности жидкости (ведь с других сторон она окружена стенками сосуда). Поэтому большая площадь поверхности воды в тарелке способствует большему количеству вылетов молекул. Следовательно, испарение идет быстрее.
Итак, площадь свободной поверхности – первая причина, влияющая на скорость парообразования.
Опыт 2. Поставим на весы два стакана. В левый нальем кипятка, а в правый – столько же холодной воды. Сначала весы будут в равновесии. Но через 5-10 минут оно нарушится: стакан с горячей водой станет легче! Значит, горячая вода испаряется быстрее холодной.
МКТ объясняет это так. Вылететь из жидкости могут только те частицы, кинетическая энергия которых больше, чем потенциальная энергия притяжения к остальным частицам. При повышении температуры скорость движения всех частиц возрастает, следовательно, возрастает и их кинетическая энергия. Значит, большее количество частиц может вылететь из жидкости.
Итак, температура вещества – вторая причина, влияющая на скорость парообразования.
Опыт 3. Отправимся на кухню и выберем там миску и тарелку с одинаковыми диаметрами. В каждую из них нальем по стакану воды и поставим в спокойное место. Через несколько дней мы увидим, что вода из тарелки испарилась полностью, а из миски – лишь частично. Почему же так произошло? Ведь площади свободных поверхностей воды в миске и воды в тарелке одинаковы.
Взгляните на рисунок: края миски сильнее возвышаются над поверхностью воды, чем края тарелки. Поэтому пар над поверхностью тарелки быстрее рассеивается по комнате за счет диффузии или дуновений ветра. Следовательно, над водой в миске насыщенность (то есть плотность) пара заметно больше. Его молекулы, двигаясь во всевозможных направлениях, будут часто влетать обратно в воду, из-за чего испарение из миски замедляется.
Итак, плотность пара над поверхностью, с которой происходит парообразование – третья причина, влияющая на его скорость.
Опыт 4. В одинаковые стаканы нальем равное количество различных жидкостей: спирта, воды, масла и ртути. По прошествии примерно недели мы обнаружим, что спирт испарился полностью, вода – наполовину, а масло и ртуть практически не уменьшили своего объема.
Итак, род вещества – четвертая причина различной скорости парообразования.
С точки зрения МКТ это объясняется так. Частицы различных жидкостей неодинаково прочно связаны друг с другом (то есть неодинаково сильно притягиваются друг к другу). Например, молекулы масла или ионы ртути сильно взаимодействуют друг с другом. Энергия же взаимодействия молекул спирта или бензина значительно меньше, поэтому их отрыв друг от друга и переход в воздух происходит легче, и эти жидкости испаряются быстрее.