что было названо всемирным тяготением физика
Что было названо всемирным тяготением физика
1. Что было названо всемирным тяготением?
Силы притяжения, действующие между всеми телами во Вселенной, назвали всемирным тяготением.
2. Как иначе называются силы всемирного тяготения?
Силы всемирного тяготения иначе называют гравитационными силами.
3. Кто и в каком веке открыл закон всемирного тяготения?
В 1667 г. Исаак Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения.
Исаак Ньютон сумел найти закон взаимодействия тел, т. е. формулу для расчёта гравитационной силы между двумя телами.
4. Как формулируется закон всемирного тяготения? Запишите формулу, выражающую этот закон.
Закон всемирного тяготения гласит:
Два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.
Гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга.
5. Почему мы замечаем силу притяжения всех тел к Земле, но не замечаем взаимного притяжения между самими этими телами?
5. Каковы границы применимости закона всемирного тяготения?
или
В каких случаях следует применять закон всемирного тяготения для расчёта гравитационных сил?
Формула для расчёта сил всемирного тяготения справедлива в трёх случаях:
1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними;
2) если оба тела однородны и имеют шарообразную форму;
7. Что надо понимать под расстоянием между телами в формуле закона всемирного тяготения?
Формула, выражающая закон всемирного тяготения, справедлива, когда расстояние между телами настолько велико по сравнению с их размерами, что тела можно считать материальными точками.
Направлена сила вдоль прямой, соединяющей эти материальные точки.
Материальными точками можно считать планеты и Солнце, Землю, Луну, когда вычисляют силы тяготения между ними.
Материальной точкой можно считать и тело произвольной формы, когда оно взаимодействует с шаром, радиус которого много больше размеров тела.
Именно так мы поступаем, когда рассматриваем притяжение тел к земному шару.
8. Можно ли по формуле закона всемирного тяготения рассчитать силу притяжения к Земле любого из находящихся на ней тел?
В качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на ее поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.
Силу притяжения тела к Земле называют также силой тяжести.
То есть силу тяжести можно рассчитывать и по формуле Fт = mg, и по формуле закона всемирного тяготения, взяв в формуле всемирного тяготения R равным радиусу Земли.
Тогда и ускорение тела, сообщаемое ему силой тяжести,- это и есть ускорение свободного падения g, которое равно:
9. Притягивается ли Земля к висящему на ветке яблоку?
По третьему закону Ньютона яблоко, висящее на ветке или падающее с неё с ускорением свободного падения, притягивает к себе Землю с такой же по модулю силой, с какой его притягивает Земля.
Но ускорение Земли, вызванное силой её притяжения к яблоку, близко к нулю, поскольку масса Земли несоизмеримо больше массы яблока.
Вопросы.
1. Что было названо всемирным тяготением?
Всемирным тяготением было названо взаимное притяжение всех тел во Вселенной.
2. Как иначе называются силы всемирного тяготения?
Силы всемирного тяготения иначе называются гравитационными (от латинского gravitas- «тяжесть»).
3. Кто и в каком веке открыл закон всемирного тяготения?
Закон всемирного тяготения был открыт Исааком Ньютоном в XVII веке.
4. Как читается закон всемирного тяготения?
Два любых тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс, и обратно пропорционально квадрату расстояния между ними.
5. Запишите формулу, выражающую закон всемирного тяготения.
6. В каких случаях следует применять эту формулу для расчета гравитационных сил?
Формулу можно применить для расчета гравитационных сил, если тела можно принять за материальные точки: 1) если размеры тел много меньше, чем расстояния между ними; 2) если два тела имеют шарообразную форму и однородны; 3) если одно тело, шарообразной формы во много раз больше по массе и размеру второго.
7. Притягивается ли Земля к висящему на ветке яблоку?
В соответствии с законом всемирного тяготения яблоко притягивает Землю с такой же силой, что и Земля яблоко, только противоположно направленной.
1. Приведите примеры проявления силы тяготения.
Падение тел на землю под действием силы тяжести, притяжение небесных тел (Земли, Луны, солнца, планет, комет, метеоритов) друг к другу.
2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле? к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Все три ответа обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны).
3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.
Нет, тела притягивают друг друга с одинаковыми силами, т.к. сила притяжения пропорциональна произведению их масс.
5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее: к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.
Да, все тела притягиваются друг к другу, но сила притяжения человека к Луне, много меньше чем к Земле, т.к. Луна находится значительно дальше.
Решебник по физике за 9 класс Перышкин: упражнения, задания в параграфах, проверь себя, лабораторные работы
Глава 1. §15
Всемирным тяготением было названо взаимное притяжение всех тел Вселенной (гравитационное взаимодействие тел).
Силы всемирного тяготения — гравитационные силы.
Исаак Ньютон в XVII веке открыл закон всемирного тяготения.
Закон всемирного тяготения: два любых тела притягиваются друг к другу с силой прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними.
F — модуль вектора силы гравитационного притяжения между телами с массами m1 и m2;
r — расстояние между телами (их центрами);
Закон всемирного тяготения справедлив в следующих случаях:
Да, Земля притягивается к висящему на ветке яблоку.
Шаблоны Инстаграм БЕСПЛАТНО
Хотите получить БЕСПЛАТНЫЙ набор шаблонов для красивого Инстаграма?
Напишите моему чат-помощнику в Telegram ниже 👇
Вы получите: 🎭 Бесплатные шаблоны «Bezh», «Akvarel», «Gold»
или пишите «Хочу бесплатные шаблоны» в директ Инстаграм @shablonoved.ru
Шаблоны Инстаграм БЕСПЛАТНО
Хотите получить БЕСПЛАТНЫЙ набор шаблонов для красивого Инстаграма?
Напишите моему чат-помощнику в Telegram ниже 👇
Вы получите: 🎭 Бесплатные шаблоны «Bezh», «Akvarel», «Gold»
Закон всемирного тяготения
Гравитационное взаимодействие
Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.
Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:
Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).
Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.
Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.
Закон всемирного тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей.
Задачка раз
Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?
Решение
По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:
По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1=2R2.
Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.
Задачка два
У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?
Решение
По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:
Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.
Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Закон всемирного тяготения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Но разве это не зависит еще и от массы предмета?
Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.
Третий закон Ньютона
Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.
Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.
Если попроще — сила действия равна силе противодействия.
Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈
Третий закон Ньютона
F1 — сила, с которой первое тело действует на второе [Н]
F2 — сила, с которой второе тело действует на первое [Н]
Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.
Задачка для практики
Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?
Решение
Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.
Ответ: мяч притягивает Землю с силой 5 Н.
Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.
Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.
Гравитационные силы. Закон всемирного тяготения.
теория по физике 🧲 динамика
Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.
Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.
Закон всемирного тяготения
Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.
F — сила всемирного тяготения, m1и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10 –11 Н ∙ м 2 /кг 2 ).
Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.
Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1= 1 кг и m2= 1 кг, то F = G.
Сила тяжести
Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.
Сила тяжести — сила, с которой Земля притягивает к себе тела.
Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.
Расчет силы тяжести на Земле
Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:
Вывод формулы ускорения свободного падения
Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.
Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.
Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:
Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:
Формула расчета ускорения свободного падения
Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.
Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙10 22 кг.
Переведем километры в метры: 1736 км = 1736000 м.
Первая космическая скорость
Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.
Определение Первая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.
Вывод формулы первой космической скорости
Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:
Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.
Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:
Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:
Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:
Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:
Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.
Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:
8 км/с — первая космическая скорость Земли.
Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙10 24 кг, а ее радиус равен 6052 км.
Алгоритм решения
Решение
Запишем исходные данные:
Запишем закон всемирного тяготения:
Из формулы видно, что сила гравитационного притяжения обратно пропорционально квадрату расстояния между телами массами m1 и m2.
R2 больше R1 втрое (6 больше 2 в 3 раза). Следовательно, расстояние между шарами тоже увеличилось втрое. В таком случае сила гравитационного притяжения между ними уменьшится в 3 2 раз, или в 9 раз. Так как в первом случае эта сила была равна 1 нН, то во втором она составит в 9 раз меньше, или 1 нН.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?