что было написано на python
Топ-16 Python-приложений в реальном мире
Удовольствие от написания Python-кода заключается в возможности создавать короткие, лаконичные и читаемые классы, которые выражают большой объем логики в небольшом объеме кода, а не в сотнях строк, утомляющих читателя.
За последние несколько лет технологии вокруг нас поменялись почти во всех аспектах. Мы живем в мире, где во главе угла стоит программное обеспечение, а за почти любой службой стоит какая-нибудь строчка кода. Индустрия путешествий, банкинг, образование, исследования, военная сфера — лишь немногие из тех, кто полагается на ПО.
Любой софт написан на каком-то языке программирования. А число последних лишь растет.
Однако одним из самых популярных в мире на сегодня является Python. В этом материале рассмотрим примеры реальных приложений, работающих на этом языке.
Реальные приложения на Python
Python сильно поменялся с момента создания в 1991 году Гвино ван Россумом. Это динамический, интерпретируемый, высокоуровневый язык программирования, с помощью которого можно создать массу разнообразных приложений. У него плавная кривая обучения и понятный синтаксис.
С помощью Python делают веб-приложения, видеоигры, занимаются Data Science и машинным обучения, разрабатывают софт, работающий в реальном мире, а также встроенные приложения и многое другое.
1. Веб-разработка
Наверняка все разработчики знают, что такое веб-разработка. Это квинтэссенция применимости Python. Также этот язык выделяет широкое разнообразие фреймворков и систем управления контентом (CMS), которые упрощают жизнь разработчика. Среди самых популярных решений — Django, Flask, Pyramid и Bottle. Среди CMS выделяются Django CMS, Plone CMS и Wagtail.
Веб-разработка на Python дает такие преимущества, как повышенная безопасность, масштабируемость и удобство в процессе работы. Также язык из коробки поддерживает такие протоколы, как HTML, XML, email-протоколы, FTP. У Python одна из крупнейших коллекций библиотек, упрощающих и улучшающих жизнь разработчика.
Посмотреть список сайтов, которые использую python можно на https://trends.builtwith.com/framework/Python.
2. Разработка игр
По аналогии с веб-разработкой в Python есть масса инструментов и библиотек для разработки игр. Кстати, а вы знали, что на этом языке программирования была написала популярная некогда Battlefield 2?
Для разработки игр используются такие библиотеки, как PyGame, Pycap, Construct, Panda3D, PySoy и PyOpenGL.
Также с помощью Python были разработаны такие проекты, как Sims 4, World of Tanks, Civilization IV и EVE Online. Можно вспомнить еще Mount & Blade, Doki Doki Literature Club, Frets on Fire и Disney’s Toontown Online.
3. Искусственный интеллект и машинное обучение
По данным GitHub Python расположился на втором месте среди языков, используемых для машинного обучения.
Искусственный интеллект и машинное обучение — очень популярные темы сегодня. С помощью них мы сегодня принимаем очень много решений. Python отчасти повлиял на такой рост популярность отрасли.
Стабильность и безопасность языка сделали его идеальным для интенсивных вычислений, без которых AI и ML не обходятся. А широкая коллекция библиотек помогает при разработке моделей и алгоритмов. Вот самые популярные библиотеки:
4. Графический интерфейс для настольных приложений
Иногда можно обойтись и без полноценного интерфейса, но для большинства проектов сегодня важен GUI. И для них в Python тоже есть множество решений.
При этом доступный синтаксис и модульная структура позволяют создавать быстрые и отзывчивые интерфейсы, делая еще и сам процесс разработки приятным. Среди самых популярных библиотек и фреймоворков — PyQt, Tkinter, Python GTK+, wxWidgets и Kivy.
5. Обработка изображений
Благодаря росту популярности машинного обучения, глубокого обучения и нейронных сетей выросла и роль инструментов для (предварительной) обработки изображений. Python в полной мере удовлетворяет этот спрос.
Среди самых популярных инструментов в Python можно выделить OpenCV, Scikit-Image, Python Imaging Library (PIL). Среди известных приложений, использующих Python — GIMP, Corel PaintShop, Blender и Houdini.
6. Обработка текста
Обработка текста — чуть ли не самый распространенный сценарий использования Python. Она руку идет с NLP (обработкой естественного языка), но не будем погружаться в эту тему сейчас. Обработка текста позволяет обрабатывать большие объемы текста, предоставляя гибкость структуры. Можно запросто сортировать строки, извлекать определенный текст, форматировать абзацы и так далее.
7. Бизнес приложения
Бизнес приложения во многом отличаются от обычного потребительского ПО. Во-первых, они предлагают ограниченный набор функций вместо десяток или даже сотен возможностей. Во-вторых, у них есть конкретная целевая группа (чаще всего ею выступает определенная организация).
Python отлично подходит для разработки таких высоконагруженных приложений.
Еще одной важной составляющей любого приложения является безопасность. И хотя почти все программы создаются с прицелом на безопасность, возможности Python в этом плане очень важны для бизнес-решений. Также Python позволяет писать масштабируемый код.
8. Образовательные и тренировочные программы
Python — отличная точка входа для каждого, кто хочет познакомиться с миром современного программирования. Все благодаря максимально простому синтаксису языка, который очень напоминает английский. Также изучается Python быстрее других языков. Именно поэтому этот язык один из основных кандидатов на то, чтобы быть первым языком программирования.
Есть масса обучающих ресурсов для получения начальных знаний по Python, но среди самых популярных можно выделить Coursera, edX, Udemy, Python Institute и Harvard.
9. Аудио и видео приложения
Эффективность Python позволяет использовать его для аудио и видео приложений. Для этого есть масса инструментов и библиотек. Сигнальная обработка, управление аудио, распознавание звуков — все это доступно с помощью таких библиотек, как Pyo, pyAudioANalysis, Dejavu и других.
Для видео же есть Scikit-video, OpenCV и SciPy. С их помощью можно управлять видеороликами и готовить их к использованию в других приложениях. На Python написаны Spotify, Netflix и YouTube.
10. Парсинг
В интернете просто невероятные объемы информации. И с помощью веб-парсеров данные на сайтах можно собирать, сохраняя их в одном месте. После этого их могут использовать исследователи, аналитики или организации для самых разных задач.
На Python есть такие библиотеки, как PythonRequest, BeautifulSoup, MechanicalSoup, Selenium и другие. Парсеры используются для отслеживания цены, аналитики, анализа в социальных медиа, проектах машинного обучения и в любых других проектах, где есть большие объемы данных.
11. Data Science и визуализация данных
Данные играют ключевую роль в современном мире. Они помогают понимать людей, их вкусы, собирать и анализировать интересные наблюдения. Это все — важная часть Data Science. В этой области требуется определить проблему, собрать данные, обработать их, изучить, проанализировать и визуализировать.
В экосистеме Python есть такие решения, как TensorFlow, PyTorch, Pandas, Scikit-Learn, NumPy, SciPy и многие другие.
Визуализация важна, когда данные нужно преподнести команде или держателям акций. Для этого в Python есть Plotly, Matplotlib, Seaborn, Ggplot, Geoplotlib и другие.
12. Научные и математические приложения
Мы уже определили, что в Python есть библиотеки для научных и математических вычислений, включая AI, ML и Data Science. Но даже если не брать эти сферы, язык пригодится, например, для работы с высокоуровневыми математическими функциями.
Стоит отметить такие инструменты, как Pandas, IPython, SciPy, Numeric Python, Matplotlib и другие. С помощью Python созданы такие приложения, как FreeCAD и Abaqus.
13. Разработка программного обеспечения
Python подходит не только для веб-разработки, научной разработки, создания игр или встраиваемых систем. По большому счету, это универсальное решение для софта любого типа. Все это возможно благодаря тому, что Python обеспечивает высокую скорость исполнения, хорошую совместимость, отличную поддержку со стороны сообщества, а также огромное количество библиотек. С помощью Python были созданы Roundup, Buildbot, SCons, Mercurial, Orbiter и Allura.
Часто разработчики используют Python как вспомогательный язык для управления проектами, контроля сборок и тестирования.
14. Операционные системы
Операционные системы — мозг любого компьютера. На Python, например, работают ОС, построенные на базе Linux. Как минимум, отдельные части таких систем.
В качестве примеров можно вспомнить Ubiquity Installer от Ubuntu, Anaconda Installer от Red Hat Enterprise. Также язык использовался для создания Gentoo Linux и системы управления пакетами Portage в Google Chrome OS. Вообще комбинация Python и C дает огромные преимущества при проектировании и разработке операционных систем.
15. CAD-приложения
CAD (computer aided design) приложения преимущественно используются в автомобильной, аэрокосмической и архитектурной сферах. Они помогают инженерам и дизайнерам проектировать продукты с точностью до миллиметров.
В среде Python из таких приложений есть FreeCAD, Fandango, PythonCAD, Blender и Vintech RCAM. Они предоставляют такие функции, как макрозапись, верстаки, симуляция роботов, скетчинг, поддержка мультиформатного импорта/экспорта, модули технического чертежа и многое другое.
16. Встроенные приложения
Одна из самых впечатляющих возможностей Python — работа на встроенном железе. Это такие устройства, которые предназначены для выполнения ограниченного набора действий. Встроенный софт — это тот, который отвечает за работу таких устройств. Среди самых популярных приложений MicroPython, Zerynth, PyMite и EmbeddedPython.
В качестве примера встроенных устройств можно вспомнить цифровые камеры, смартфоны, Raspberry Pi, промышленные роботы и другие, которые могут работать с помощью Python. Не все знают, но Python может использоваться как слой абстракции там, где на системном уровне работают C или C++.
Другие приложение на Python
Вывод
Python — продвинутый и универсальный язык программирования, который быстро приобретает популярность среди разработчиков в разных отраслях. Его можно применить почти в любой сфере благодаря широкому набору библиотек.
Если вы только знакомитесь с программированием в целом, то этот материал должен был убедить вас выбрать в качестве первого языка Python. Благо, выучить его сегодня легко с помощью обилия книг, курсов, GitHub-репозиториев, популярных инструментов и библиотек.
🐍 Примеры использования Python, вдохновляющие на его изучение
Сергей Кравченко
Преимущества
Python – интерпретируемый язык. Он не преобразует сразу весь текст программы в машинный код, но годится для создания поразительных вещей. Это сделало Python популярным среди разработчиков и породило множество впечатляющих проектов в самых разных областях.
Научные вычисления и анализ данных
Научные библиотеки
Благодаря обширной библиотечной базе, Python стал важным инструментом в различных исследованиях. На нем часто пишут приложения для обработки научных данных.
Некоторые из наиболее полезных пакетов Python для научных вычислений:
Netflix
Netflix использует Python для анализа данных на стороне сервера. На нем написан центральный шлюз оповещений, который обрабатывает предупреждения, а затем направляет их инженерам и разработчикам. Шлюз также подавляет повторяющиеся предупреждения и автоматически выполняет действия, вроде перезагрузки или завершения нестабильного процесса. Это позволяет освободить сотрудников от избыточных вызовов.
FreeCAD
FreeCAD – бесплатная программа для параметрического трехмерного компьютерного проектирования с поддержкой метода конечных элементов. Она предназначена для машиностроения, но расширяется до более широкого круга применений, включая архитектуру или электротехнику. Python используется в качестве языка сценариев внутри FreeCAD. Пользователи могут самостоятельно расширять с его помощью функции приложения.
Экран FreeCAD версии 0.19
Из консоли Python или пользовательских скриптов можно выполнять во FreeCAD довольно сложные операции :
Машинное обучение
Используемые в проектах AI/ML инструменты и технологии отличаются от применяемых при разработке обычных программ. Для создания приложений AI/ML необходим стабильный, безопасный и гибкий язык, а также способные справиться с уникальными задачами инструменты. Python удовлетворяет этим требованиям, поэтому он так популярен среди профессионалов в области искусственного интеллекта и машинного обучения. Простота, согласованность, независимость от платформы, большая коллекция библиотек и активное сообщество делают его подходящим инструментом для этой непростой сферы. Использование Python в решениях искусственного интеллекта включает расширенные вычисления, аналитику данных, распознавание изображений, обработку текста на естественных языках и многое другое.
Skyscanner
Панель управления Skyscanner
AiCure
Это финансируемый Национальными институтами здравоохранения и венчурным капиталом медицинский стартап из Нью-Йорка, который объединил искусственный интеллект с мобильными технологиями. AiCure помогает пациентам своевременно принимать назначенные лекарства, используя распознавание лиц, действий и препаратов. Приложение может анализировать состояние пациента, чтобы определить, действует ли лечение.
Генеративный предварительно обученный трансформатор (GPT-2) – это искусственный интеллект с открытым исходным кодом, созданный компанией OpenAI. GPT-2 переводит и резюмирует текст, отвечает на вопросы и генерирует текст для вывода. Проще говоря, это нейросеть, которая умеет работать с естественным языком, полностью написанная на Python.
Веб-разработка
Поскольку для Python есть множество библиотек и специальных фреймворков, он особенно хорош для веб-программирования. В частности, возможности динамической разработки с Django сделали его исключительно полезным инструментом для создания веб-приложений. Фреймворк предлагает стандартные библиотеки, которые существенно упрощают труд программиста.
Google поддерживает Python почти с самого начала: «Python там, где мы можем, C ++, где должны». Это означает, что C ++ используется только там, где нужен императивный контроль памяти и требуется низкая задержка.
В 2016 году команда инженеров Instagram хвасталась, что они провели крупнейшее в мире развертывание фреймворка Django. Вероятно, это справедливо и сегодня. С тех пор компания потратила немало времени и ресурсов на поддержку Python.
Визуальные эффекты и gamedev
В Python доступен целый арсенал инструментов и библиотек для разработки игр и визуальных эффектов. С его помощью были созданы, например, Battlefield 2, World of Tanks и Civilization-IV.
Blender
Blender – сложный инструмент для создания трехмерных графических моделей. Используя встроенный интерпретатор Python, в нем можно создавать 3D-игры. Blender поддерживает запись скриптов Python для скульптурных работ с помощью сетки, а также сценарии для создания пользовательских инструментов, прототипирования, игровой логики, импорта/экспорта из других форматов и автоматизации задач. Это позволяет интегрировать с приложением внешние механизмы рендеринга. Выражения Python также можно писать непосредственно в поля ввода чисел.
DeepFaceLab
DeepFaceLab может создавать поддельные изображения и видео, меняя возраст и лица. Чтобы сделать ролики более убедительными, DeepFaceLab позволяет изменить в них речь, хотя для этого требуется знание программного обеспечения для редактирования видео.
Заключение
Это далеко не полный список отраслей и примеров применения Python. Можно, например, вспомнить з наменитый BitTorrent, первая реализация которого была написана именно на Python, а также множество других проектов. Мы надеемся, что эта статья даст читателям некоторое представление о возможностях одного из самых популярных языков программирования. В его изучении всегда помогут статьи «Библиотеки программиста». Удачи!
На Python создают прикладные приложения, пишут тесты и бэкенд веб-приложений, автоматизируют задачи в системном администрировании, его используют в нейронных сетях и анализе больших данных. Язык можно изучить самостоятельно, но на это придется потратить немало времени. Если вы хотите быстро понять основы программирования на Python, обратите внимание на онлайн-курс «Библиотеки программиста». За 30 уроков (15 теоретических и 15 практических занятий) под руководством практикующих экспертов вы не только изучите основы синтаксиса, но и освоите две интегрированные среды разработки (PyCharm и Jupyter Notebook), работу со словарями, парсинг веб-страниц, создание ботов для Telegram и Instagram, тестирование кода и даже анализ данных. Чтобы процесс обучения стал более интересным и комфортным, студенты получат от нас обратную связь. Кураторы и преподаватели курса ответят на все вопросы по теме лекций и практических занятий.
Популярные проекты на Python
Python входит в 5-ку самых популярных языков программирования. Он используется в самых разных областях IT, таких, как веб-разработка, машинное обучение, создание приложений и даже геймдев.
Где применяется Python
Python используется в разных областях программирования не просто так. Он прост в изучении, имеет приятный синтаксис и обладает достаточным для решения любых задач набором инструментов.
И хотя он не может потеснить Java и PHP с ведущих мест в веб-разработке, в сфере машинного обучения Python – язык номер один.
Создание приложений
Python можно использовать для разработки десктопных и мобильных приложений, для этого разработано много мощных инструментов. Однако крупные проекты зачастую не пишут только на одном Python полностью.
Python часто используется для разработки отдельных частей приложения, он позволяет создать простую систему моддинга. Благодаря высокой степени модульности, изменение одной части программы может не затрагивать другую.
Возможность встроить в Python код на С/C++ сглаживает проблему низкой скорости работы программ.
Веб-разработка
Python захватил определенную часть сферы, но не может соперничать с такими гигантами, как PHP, Java и Node.js. Для реализации серверной логики они удобнее и мощнее Python.
На Python часто создаются решения, которые имеют узкую направленность. Например, отправку документа с сайта на принтер трудно реализовать на PHP, а Python легко справляется с этой задачей.
Python проигрывает, потому что он является языком общего назначения, PHP – это инструмент, заточенный только под веб-программирование, а Java уже давно используется в вебе.
Машинное обучение
Искусственный интеллект с каждым годом становится лучше, ученые одержимы идеей создать суперкомпьютер, превосходящий человека во всем.
Python стал абсолютным лидером в этой сфере по ряду причин:
Интересные проекты на Python
Разработок много, но не все из них можно назвать успешными, однако есть проекты, заслуживающие внимания. Рассмотрим примеры известных программ, игр и сайтов написанных на Python.
На Python написаны сотни арканоидов, платформеров и других маленьких проектов, но, чтобы оценить возможности языка, следует рассмотреть большие разработки.
Mount and Blade
Такой системы нет ни в одной игре. Стратегия, RPG и экшн — странная, но крутая смесь. Кроме того, на поле боя может быть несколько сотен воинов, управляемых компьютером, такой масштаб впечатляет.
Все скрипты написаны на Python. Игра отлично работает на слабых машинах. Особенность Python — возможность сделать проект модульным. Энтузиасты без проблем могут сделать дополнения для игры, изменить какую-то механику, текстуры и анимации, эти изменения никак не коснутся системных файлов игры.
Battlefield
Battlefield полюбили миллионы человек. Не стоит думать, что игра полностью написана на Python. Разработчики использовали его для создания некоторых скриптов, серверной части игры и её логики.
Игра вышла в 2005 году и имела подходящие для компьютеров того времени системные требования. Использование Python позволило ускорить разработку и не повлияло на производительностью
EVE Online
Как и в случае с Battlefield, в EVE Online Python использовался для создания игровой логики и управления серверной частью игры.
Разработчики использовали улучшенную версию интерпретатора, которая называется stackless python. Так как это ММО, сервер может обрабатывать миллионы запросов, и stackless python отлично справляется с этим.
Sims 4
Sims – это самый известный симулятор жизни.
Игра была на слуху около 4 лет, освещалась на различных событиях, занимала топы и, конечно, успешно продавалась. Чтобы дать игрокам больше контента и возможностей, разработчики использовали Python для реализации игрового моддинга, что позволило без проблем расширять игру с помощью дополнительного контента.
Civilization 4
Про цивилизацию слышал каждый геймер. Это глобальная пошаговая стратегия, сочетающая в себе дипломатию, развитие и войну.
Разработчики не ограничились использованием Python для реализации каких-то частей проекта, они написали на нём практически всю игру.
Программы
BitTorrent
Популярный торрент-клиент, которым пользуются миллионы людей, был полностью написан на Python.
Примечание: 6 версия программы была переписана на C++.
Blender
Это программа для работы с 3D графикой, способная соперничать с такими гигантами, как Maya и 3DMax.
Пользователь получает возможность создавать трехмерные модели, анимацию, а также видео и игры.
Главное преимущества программы заключается в том, что она распространяется бесплатно. Blender постоянно улучшается, дополняется с помощью различных расширений, получает все больше поддержки в виде видео-уроков и обучающих статей.
Python используется для создания логики, импорта и экспорта, автоматического выполнения задач и работы инструментов.
GIMP является редактором растровой графики и, частично, векторной графики.
Он является единственной достойной заменой Adobe Photoshop в системе Linux и установлен на большинстве дистрибутивов по умолчанию.
Python использовали для создания фильтров, дополнительных модулей, некоторых скриптов.
Программа, которая использует метод интервальных повторений, чтобы пользователь мог легко запомнить нужную информацию (новые слова, формулы, ответы на тесты и другое).
Calibre
Любимое приложение каждого, кто читает много книг.
Программа позволяет просматривать, конвертировать и редактировать книги различных форматов, кроме того она поддерживает прямую работу с различными электронными книгами.
Искусственный интеллект
Python — лидер в сфере машинного обучения. Он может быть как основным языком проекта, так и использоваться в отдельных модулях.
Наиболее популярными являются ИИ, работающие с фотографиями и видео (поиск по фото, редактирование видео и фото, сопоставление различных фото и так далее). Программисты даже могут научить компьютер определять эмоциональное состояние человека по фотографии, хотя есть еще некоторые проблемы, связанные с индивидуальными особенностями мимики разных людей.
Обилие библиотек позволяет без проблем создавать ИИ, способные ориентироваться в пространстве, принимать решения, выполнять задачи, недоступные человеку.
Одним из новейших искуственных интеллектов, написанных на Python, является AlphaStar – искусственный интеллект для Starcraft 2.
Разработчики использовали PySC2 — инструменты, написанные на Python специально для SC2.
Сложность заключается в том, что компьютеру нужно делать и оценивать много вещей: разведывать противника, определять его стратегию, подстраивать свою игру под неё, принимать оптимальные решения по передвижению армии и многое другое.
AlphaStar показал поразительные результаты, он обыграл одного из лучших игроков мира.
Сайты
Для работы с сайтами используют обычно фреймворк Django, превращающий Python в язык для веб-программирования.
Это самая популярная поисковая система в мире.
Каждый день через сервера Google проходит огромный объем трафика, который обрабатывается и направляется с помощью Python.
YouTube
Это сайт, где пользователи могут загружать и смотреть видеоролики.
Он известен каждому пользователю интернета и ежедневно собирает миллиарды просмотров.
Это самая популярная социальная сеть в мире, ежедневно пользователи загружаются миллионы картинок, меняют статусы, создаются посты — всё это обрабатывается с помощью инструментов языка Python.
Популярная социальная сеть, которая используется людьми, чтобы делится историями из жизни, фотографиями, мыслями и так далее.
Всё, что связано с картинками (поиск, постинг, просмотр) обрабатывается кодом на Python.
Потенциал Python в крупных проектах
Python часто используют для прототипирования программ, позже они переписываются на другие языки программирования. Это очень удобно, потому что разработка таких прототипов очень быстрая, также она помогает понять, как будет выглядеть программа. На другой язык проект переписывается из-за низкой скорости выполнения кода на Python.
Да, этот язык можно использовать во всех крупных проектах, как инструмент для создания прототипов, но как насчет применения в финальной версии?
Если не рассматривать машинное обучение, и брать программы, которым жизненно важна скорость выполнения, то вряд ли для Python найдется место. Однако часто практикуется гибрид разных языков, например, Python и C++. Такой подход позволяет достичь и высокой скорости разработки и высокой скорости выполнения программы. На Python пишется большая часть кода, а на C++ лишь те участки, которые сильно влияют на скорость выполнения (например, функция по обработке и передаче большого количества данных в единицу времени).