чем обладают источник и приемник электроэнергии

Чем обладают источник и приемник электроэнергии

Источники, приёмники и проводники электрической энергии

Электрическая энергия — самый дешевый и удобный вид энергии. Она широко используется в народном хозяйстве и в быту. Производство и потребление электрической энергии растет с каждым годом.

чем обладают источник и приемник электроэнергии. turbogenerator. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-turbogenerator. картинка чем обладают источник и приемник электроэнергии. картинка turbogenerator.

Для работы подавляющего большинства современных промышленных машин, аппаратов, приборов и бытовых устройств необходим источник электрической энергии (источник тока). Источником тока может быть генератор на электростанции, батарея гальванических элементов, аккумулятор.

чем обладают источник и приемник электроэнергии. fonarik%20small. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-fonarik%20small. картинка чем обладают источник и приемник электроэнергии. картинка fonarik%20small.


Электрическая энергия, вырабатываемая источником, принимается потребителем (приемником) электроэнергии. Потребители электроэнергии — это и лампочка в фонаре, и двигатель в электрокаре и в станке, и электрический звонок, и электрический утюг, и многие другие устройства. В них электрическая энергия преобразуется в свет, звук, тепло, механическое движение.

чем обладают источник и приемник электроэнергии. silov%20kabel%20small. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-silov%20kabel%20small. картинка чем обладают источник и приемник электроэнергии. картинка silov%20kabel%20small.

Для передачи электрической энергии от источника тока к потребителю нужны проводники. Хорошими проводниками являются металлы.

Материалы, не проводящие ток, называются изоляторами. К ним относятся пластмасса, стекло, фарфор, резина, сухая древесина, сухой воздух и др.

Электрическую энергию можно получать по-разному. Существуют электростанции, которые вырабатывают электричество, сжигая топливо; электроэнергию получают используя силу ветра, приливных течений, а также – энергию солнца.

чем обладают источник и приемник электроэнергии. gener. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-gener. картинка чем обладают источник и приемник электроэнергии. картинка gener. чем обладают источник и приемник электроэнергии. solar%20small. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-solar%20small. картинка чем обладают источник и приемник электроэнергии. картинка solar%20small.чем обладают источник и приемник электроэнергии. vetrogener. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vetrogener. картинка чем обладают источник и приемник электроэнергии. картинка vetrogener.

Ниже представлена схема, в которой наглядно показано, как происходит получение, передача, распределение и использование электрической энергии.

чем обладают источник и приемник электроэнергии. elstancia. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-elstancia. картинка чем обладают источник и приемник электроэнергии. картинка elstancia.

Схема распределения электроэнергии потребителям

Источник

Приемники электрической энергии

Приемником электрической энергии (электроприемником) называется аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии (в том числе электрическую, по с другими параметрами) для ее использования.

По технологическому назначению их классифицируют в зависимости от вида энергии, в который данный приемник преобразует электрическую энергию, в частности:

механизмы приводов машин и механизмов;

электротермические и электросиловые установки;

установки электроде астения;

установки электростатического и электромагнитного поля,

установки искровой обработки;

электронные и вычислительные машины;

устройства контроля и испытания изделий.

Потребителем электрической энергии называется электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.

Федеральный закон «Об энергетике» называет потребителем электрической и тепловой энергии лицо, приобретающее ее для собственных бытовых или производственных нужд, а субъектами электроэнергетики — «лиц, осуществляющих деятельность в сфере электроэнергетики, в том числе производство электрической и тепловой энергии, энергоснабжение потребителей» предоставление уснут по передаче электроэнергии, оперативно-диспетчерскому управлению в электроэнергетике, сбыт электроэнергии, организацию купли-продажи электроэнергии».

чем обладают источник и приемник электроэнергии. 1503572864 dvigatel. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-1503572864 dvigatel. картинка чем обладают источник и приемник электроэнергии. картинка 1503572864 dvigatel.

Классификация электроприемников по обеспечению надежности электроснабжения

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории:

Электроприемники I категории – электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники II категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории – все остальные электроприемники, не подходящие под определения I и II категорий. Это приемники вспомогательных цехов, несерийного производства продукции и т.п.

Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания. Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

Классификация приемников электротехнической энергии

Потребители электрической энергии характеризуются по:

1. суммарной установленной мощности электроприёмников;

2. по принадлежности к отрасли промышленности (например сельское хозяйство);

3. по тарифной группе;

4. по категории энергетической службы.

Электротехнические установки, производящие, преобразующие, распределяющие и потребляющие электроэнергию, по уровню напряжения подразделяются на электроустановки напряжением выше 1 кВ и до 1 кВ (для электроустановок постоянного тока – до 1,5 кВ). Электроустановки напряжением до 1 кВ переменного тока выполняются с глухозаземленной нейтралью, а в условиях с повышенными требованиями к безопасности – с изолированной нейтралью (торфяные разработки, угольные шахты, передвижные электроустановки и т.п.).

Установки выше 1 кВ подразделяются на установки:

1) с изолированной нейтралью (напряжением 35 кВ и ниже);

2) с компенсированной нейтралью (включенной на землю через индуктивное сопротивление для компенсации емкостных токов), применяются для сетей напряжением до 35 кВ и редко 110 кВ;

3) с глухозаземленной нейтралью (напряжением 110 кВ и выше).

По роду тока все электроприемники, работающие от сети, можно разделить на электроприемники переменного тока промышленной частоты 50 Гц (в ряде стран используют 60 Гц), переменного тока повышенной или пониженной частоты, постоянного тока.

Большинство электроприемников промышленных потребителей электроэнергии работает на переменном трехфазном токе частотой 50 Гц.

Установки повышенной частоты применяют:

Для получения частоты до 10 000 Гц применяют тиристорные преобразователи, для частоты свыше 10 000 Гц используют электронные генераторы.

Электроприемники пониженной частоты используются в транспортных устройствах, например для прокатных станов (f =16,6 Гц), в установках для перемешивания металла в печах (f = 0…25 Гц). Кроме того, пониженную частоту напряжения используют в индукционных нагревательных устройствах.

Опыт применения промышленной (50 Гц) и повышенной (60 Гц) частот подтвердил экономическую целесообразность частоты 60 Гц, а технико-экономические расчеты показали, что оптимальной следует считать частоту 100 Гц.

Характерные приёмники электроэнергии

Все приёмники электроэнергии характеризуются различными параметрами. При этом режимы их работы описываются ГЭН, поэтому с целью анализа режимов электропотребления используют характерные приёмники электроэнергии, представляющие собой группы электроприёмников, схожих по режимам работы и основным параметрам.

К характерным электроприёмникам относят следующие группы:

Электроприемники постоянного тока

Постоянный ток применяют в гальваническом производстве (хромирование, никелирование и т.д.), для сварки на постоянном токе, для питания двигателей постоянного тока и т.п.

чем обладают источник и приемник электроэнергии. 1503572893 nasos. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-1503572893 nasos. картинка чем обладают источник и приемник электроэнергии. картинка 1503572893 nasos.

Исходя из перечисленных выше классификаций, наиболее сложную совокупность электроприемников представляет собой электропривод. Самым распространенным является асинхронный электропривод, характеризующийся значительным потреблением реактивной мощности, большими пусковыми токами и существенной чувствительностью к отклонениям напряжения сети от номинального.

В установках, не требующих регулирования скорости в процессе работы, применяются электроприводы переменного тока (асинхронные и синхронные двигатели). Нерегулируемые электродвигатели переменного тока – основной вид электроприемников в промышленности, на долю которых приходится около 70% суммарной мощности.

При выборе типа электродвигателя для нерегулируемого электропривода переменного тока часто руководствуются следующими соображениями:

Асинхронные двигатели с фазным ротором применяются в мощных приводах с тяжелыми условиями пуска (в шахтных подъемниках и др.).

Электродвигатели таких общепромышленных установок как компрессоры, вентиляторы, насосы и подъемно-транспортные устройства в зависимости от номинальной мощности имеют напряжение питания 0,22 – 10 кВ. Номинальная мощность электродвигателей этих установок изменяется от долей киловатт до 800 кВт и более. Названные электроприемники относят, как правило, к I категории надежности электроснабжения. Например, отключение вентиляции в цехах химических производств требует эвакуации людей из помещений и, следовательно, остановки производства.

Преобразование электроэнергии переменного тока в постоянный требует затрат на установку преобразовательных агрегатов и аппаратуры управления, на строительство помещений для них, а также эксплуатационных расходов на их обслуживание и на потери электроэнергии. Поэтому стоимость системы электроснабжения и удельная стоимость электроэнергии на постоянном токе выше, чем на переменном. Двигатели постоянного тока стоят дороже, чем асинхронные и синхронные двигатели. Регулируемые приводы постоянного тока применяются в тех случаях, когда требуется быстрое, широкое и (или) плавное изменение частоты вращения.

чем обладают источник и приемник электроэнергии. 1503572986 addvigatell. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-1503572986 addvigatell. картинка чем обладают источник и приемник электроэнергии. картинка 1503572986 addvigatell.

Коэффициент мощности электроприемников

Важной характеристикой электроприемника является коэффициент мощности cos(φн). Коэффициент мощности является паспортной характеристикой, отражающей долю потребляемой активной мощности при номинальных нагрузке и напряжении. Номинальное значение cosφ электродвигателя зависит от его типа, номинальной мощности, частоты вращения и других характеристик. При эксплуатации электродвигателей их cosφ в основном зависит от загрузки.

Для электропривода крупных насосов, компрессоров и вентиляторов часто применяют синхронные двигатели, которые используются как дополнительные источники реактивной мощности в системе электроснабжения.

Из электротехнологических устройств наибольшие проблемы вызывают дуговые сталеплавильные печи из-за следующих причин:

Аналогичные с дуговыми сталеплавильными печами проблемы имеют электросварочные установки переменного тока. Особенно низкий у них cosφ.

Электрическое освещение также вызывает некоторые электросетевые проблемы, а именно: применяемые вместо ламп накаливания высокоэкономные разрядные лампы имеют нелинейную характеристику и чувствительны к кратковременным (доли секунд) перерывам электроснабжения. Однако эти проблемы в настоящее время решаемы за счет перевода ламп на высокочастотное питание через индивидуальные преобразователи частоты, что улучшает не только их светотехнические, но и энергетические параметры.

Источники света (лампы накаливания, люминесцентные, дуговые, ртутные, натриевые и др.) являются однофазными электроприемниками и для снижения несимметрии равномерно распределяются по фазам. Для ламп накаливания cosφ = 1, а для газоразрядных соsφ = 0,6.

К электроснабжению устройств управления и обработки информации предъявляются повышенные требования в отношении надежности и качества электроэнергии, поэтому они питаются, как правило, от источников гарантированного бесперебойного электроснабжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

чем обладают источник и приемник электроэнергии. vidy toka. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka.

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

чем обладают источник и приемник электроэнергии. vidy toka5. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka5. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka5.

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

чем обладают источник и приемник электроэнергии. vidy toka8. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka8. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka8.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

чем обладают источник и приемник электроэнергии. vidy toka6. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka6. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka6.

Химические источники

Все химические источники можно разбить на 3 группы:

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

чем обладают источник и приемник электроэнергии. vidy toka2. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka2. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka2.

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

чем обладают источник и приемник электроэнергии. vidy toka3. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka3. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka3.

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

чем обладают источник и приемник электроэнергии. vidy toka7. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-vidy toka7. картинка чем обладают источник и приемник электроэнергии. картинка vidy toka7.

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Источник

Электроприемник: что это такое, определение, примеры

Электроприемник (current-using equipment) — это электрическое оборудование, предназначенное для преобразования электрической энергии в другой вид энергии (согласно ГОСТ 30331.1-2013 [1]). В некоторой нормативной документации вместо термина «электроприёмник» используют аналогичный по значению термин «приёмник электрической энергии».

Обратимся к книге [2], в которой Ю.В. Харечко приводит примеры электроприемников:

« Электроприёмники представляют собой преобладающую часть электрооборудования, которую применяют для преобразования электрической энергии в механическую, тепловую, световую и другие виды энергии. В качестве примера, к электроприёмникам относят такое электрооборудование как электродвигатели, электронагреватели, электрические светильники, подавляющую часть бытового электрооборудования: электрические плиты, фены, утюги, стиральные машины, пылесосы, холодильники и др. »

Также в книге [2] можно найти примеры электрооборудования, которое нельзя отнести к электроприемникам:

« Генераторы, преобразователи характеристик электроэнергии (например, частоты), трансформаторы, зажимы, штепсельные разъемы, шины, защитные устройства, измерительные приборы, распределительные устройства и, как правило, кабельная продукция не являются электроприемниками, так как их применяют для производства, изменения характеристик, передачи и распределения электрической энергии, а не для ее преобразования в другой вид энергии. »

Источник

Чем обладают источник и приемник электроэнергии

Основные элементы электрических цепей

чем обладают источник и приемник электроэнергии. shema. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-shema. картинка чем обладают источник и приемник электроэнергии. картинка shema.

Электрической цепью называются совокупность устройств, предназначенных для взаимного преобразования, передачи и распределения электрической и других видов энергии и информации (в виде электрических сигналов), если процессы в устройствах можно описать при помощи понятий о токе, напряжении и электродвижущей силе (ЭДС).

чем обладают источник и приемник электроэнергии. oboznachenie jelementov jelektrocepi. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-oboznachenie jelementov jelektrocepi. картинка чем обладают источник и приемник электроэнергии. картинка oboznachenie jelementov jelektrocepi.К основным элементам электрической цепи относятся источники электрической энергии (источники питания), приемники электрической энергии или потребители, устройства для передачи энергии от источников к приемникам.

Приемники электрической энергии преобразуют электрическую энергию в другие виды энергии, например, электродвигатели — в механическую, электрические печи и нагревательные приборы — в световую и тепловую; электролитические ванны — в химическую.

Устройствами для передачи электрической энергии от источников к приемникам являются линии передачи, электрические сети и просто провода. Проводом называется металлическая проволока, изолированная или неизолированная (голая). Провода выполняются из меди, алюминия или стали.

Токопровод электрической цепи, т. е. путь, по которому проходит электрический ток, на всем протяжении должен иметь изоляцию, устраняющую возможность прохождения тока по каким-либо побочным путям. Изоляция, кроме того, ограждает людей от прикосновения к участкам токопровода, находящимся под потенциалом, отличным от потенциала земли.

Как указывалось, провода, а также и все другие элементы цепи оказывают сопротивление электрическому току или, как обычно говорят, обладают сопротивлением.

Кроме рассмотренных основных элементов электрические цепи содержат и другие необходимые для их эксплуатации элементы; к ним относятся коммутационная аппаратура, предназначенная для включения и отключения.

Резистор обладает следующим свойством, на основе которого он применяется в схемах:

чем обладают источник и приемник электроэнергии. 230108. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-230108. картинка чем обладают источник и приемник электроэнергии. картинка 230108.

Резистор обладает следующим свойством, на основе которого он применяется в схемах:

чем обладают источник и приемник электроэнергии. %D0%B1%D1%83%D1%80%D0%B6%D1%83%D0%B9%D1%81%D0%BA%D0%B8%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-%D0%B1%D1%83%D1%80%D0%B6%D1%83%D0%B9%D1%81%D0%BA%D0%B8%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80. картинка чем обладают источник и приемник электроэнергии. картинка %D0%B1%D1%83%D1%80%D0%B6%D1%83%D0%B9%D1%81%D0%BA%D0%B8%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80.

чем обладают источник и приемник электроэнергии. %D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80. картинка чем обладают источник и приемник электроэнергии. картинка %D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B5%D0%B7%D0%B8%D1%81%D1%82%D0%BE%D1%80.

Действие реостатов основано на зависимости сопротивления проводника от его длины. Конструкция реостатов позволяет изменять длину участка, по которому идет ток. При увеличении этой длины сопротивление реостата возрастает, при уменьшении убывает.

Различают рычажные и ползунковые реостаты:

чем обладают источник и приемник электроэнергии. %D0%A0%D0%95%D0%9E%D0%A1%D0%A2. чем обладают источник и приемник электроэнергии фото. чем обладают источник и приемник электроэнергии-%D0%A0%D0%95%D0%9E%D0%A1%D0%A2. картинка чем обладают источник и приемник электроэнергии. картинка %D0%A0%D0%95%D0%9E%D0%A1%D0%A2.Использование рычажного реостата: передвигая рычаг реостата от одного контакта к другому, можно вводить большее или меньшее число проволочных спиралей, и тем самым скачком (ступенчато) изменять сопротивление в цепи.

Применяя ползунковый реостат, можно плавно изменять цепное сопротивление. Для этого реостат снабжен скользящим контактом (ползунком). Перемещая его, мы включаем меньшую (большую) часть обмотки реостата, и его сопротивление плавно изменяется.

Резисторы, в зависимости от сопротивления, разделяют на:

Проволочные ( Это резисторы сравнительно небольших сопротивлений, рассчитанных на токи в несколько десятков миллиампер; Для их изготовления используют тонкую проволоку из никелина, нихрома и некоторых других металлических сплавов) ;

Непроволочные (металлопленочные) ( Это резисторы больших сопротивлений, рассчитанных на сравнительно небольшие токи; При их изготовлении используют различные сплавы металлов и углерод, которые тонкими слоями наносят на изоляционные материалы.

Цветовая маркировка резисторов

Тип маркировки, при котором на корпус резистора наносится краска в виде цветных колец или точек, называют цветовым кодом. Каждому цвету соответствует определенное цифровое значение. Цветовая маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Если из-за малого размера резистора цветовую маркировку нельзя разместить у одного из выводов, то первый знак делается полосой шириной в два раза больше, чем остальные. Номинал сопротивления определяют первые три кольца (две цифры и множитель). Четвертое кольцо содержит информацию о допустимом отклонении сопротивления от номинального значения в процентах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *