Бозон хиггса что дает

Что такое бозон Хиггса и почему ученые хотели его открыть

Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.

Бозон хиггса что дает. The hoggs boson 01. Бозон хиггса что дает фото. Бозон хиггса что дает-The hoggs boson 01. картинка Бозон хиггса что дает. картинка The hoggs boson 01.

В основе основ всегда есть что-то. Вопрос в том, как это найти.

Что такое бозон Хиггса

Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.

Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.

Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.

Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.

В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.

Бозон хиггса что дает. The hoggs boson 034. Бозон хиггса что дает фото. Бозон хиггса что дает-The hoggs boson 034. картинка Бозон хиггса что дает. картинка The hoggs boson 034.

Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…

Существует ли бозон Хиггса

Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.

Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели ”полностью сложилась”, когда открыли бозон Хиггса.

Почему бозон Хиггса называют ”частицей Бога”

С 2008 год ученые подкованы поисках ”Частицы Бога” (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название ”Проклятая частица”, но оно как-то не прижилось.

Бозон хиггса что дает. lenderman. Бозон хиггса что дает фото. Бозон хиггса что дает-lenderman. картинка Бозон хиггса что дает. картинка lenderman.

Благодаря этому американскому ученому бозон Хиггса стали называть именно так.

Как говорится, ”хоть чертом лысым назови”, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.

Что даст обнаружение частицы Бога

Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.

Почему наша Вселенная такая странная и существуют ли законы физики?

Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.

Бозон хиггса что дает. The hoggs boson 03. Бозон хиггса что дает фото. Бозон хиггса что дает-The hoggs boson 03. картинка Бозон хиггса что дает. картинка The hoggs boson 03.

Визуализаций поиска бозона Хиггса очень много.

Где можно применить бозон Хиггса

На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге ”Ангелы и демоны” сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.

В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.

Источник

Чем так важна частица Хиггса

Большинство из нас учило в школе или из книг, что все окружающие нас материалы – всё, что мы едим, пьём, чем дышим, все живые существа, сама Земля – состоит из атомов. Их бывает порядка 100 типов, они называются «химическими элементами» и обычно организованы в виде молекул, так же, как буквы можно организовать в слова. Эти факты, касающиеся нашего мира, мы принимаем, как само собой разумеющееся, но в конце XIX века по этому поводу всё ещё шли жаркие дебаты. Только в районе 1900-го года, когда на основе нескольких умозаключений стало возможным подсчитать размер атомов, и когда был открыт электрон, субатомная частица, населяющая окраины атомов, атомная картинка мира, наконец, сложилась.

Но и сегодня некоторые части этой картинки не совсем чётко просматриваются. Остаются нерешёнными загадки возрастом в сотню лет. И вся эта шумиха по поводу «бозона Хиггса» как раз напрямую связана с этими глубокими вопросами, находящимися в самом сердце нашего существования. Вскоре расплывчатые части нашей картинки смогут стать более чёткими и открыть нам детали относительно нашего мира, которые нам пока неясны.

В школе мы учили, что масса у атома в основном есть благодаря его небольшому ядру. Электроны, формирующие размытое облако вокруг ядра, добавляют к этой массе не более одной тысячной её части. Но что нам обычно не рассказывают, если только не заниматься физикой углублённо – так это то, что размер атома зависит в основном от массы электрона. Если бы вы каким-то образом смогли уменьшить массу электрона, то обнаружили бы, что атомы выросли и стали более хрупкими. Уменьшите массу электрона в тысячу раз, и атомы станут такими непрочными, что даже оставшееся от Большого взрыва тепло сможет разрушить их. Поэтому вся структура и существование обычных материалов связана с, казалось бы, эзотерическим вопросом: почему у электронов вообще есть масса?

Масса электрона и её происхождение ставили в тупик физиков со времени её первого измерения. Многие открытия, связанные с другими, казалось бы, элементарными частицами, сделанные в последние сто лет, усложняли и обогащали эту загадку. Во-первых, было установлено, что свет также состоит из частиц под названием фотоны, вообще не имеющих массы. Затем, что атомное ядро состоит из частиц под названием кварки, обладающих массой. Недавно мы обнаружили признаки того, что нейтрино, неуловимые частицы, стадами бегущие из недр Солнца, тоже обладают массой, хотя и совсем небольшой. Поэтому вопрос по поводу электрона перешёл в категорию более крупных вопросов: почему у частиц, типа электронов, кварков и нейтрино, есть масса, а у фотонов – нет?

В середине прошлого века физики узнали, как записывать уравнения, предсказывающие и описывающие поведение электронов. Хотя они и не знали, откуда берётся масса электрона, они обнаружили, что эту массу довольно легко внедрить в уравнения вручную, и решили, что полное объяснение её происхождения появится когда-нибудь потом. Но когда они углубились в изучение слабого ядерного взаимодействия, одного из четырёх известных в природе, у них появилась серьёзная проблема.

Физики уже знали, что электрические силы связаны с фотонами, и затем поняли, что слабое взаимодействие связано с частицами, названными «W» и «Z». Но при этом у частиц W и Z было отличие от фотона в виде массы – они сравнимы по массе с атомом олова, более чем в сотню тысяч раз тяжелее электрона. К сожалению, физики обнаружили, что не могут внедрить массы частиц W и Z в уравнения вручную: получавшиеся уравнения давали бессмысленные предсказания. А когда они изучили, как слабое взаимодействие влияет на электроны, кварки и нейтрино, они обнаружили, что старый способ внедрения массы в уравнения не работает – он тоже ломает всю систему.

Для объяснения того, как известные элементарные частицы могут обладать массой, требовались свежие идеи.

Эта загадка постепенно проявлялась в 1950-е и 1960-е. И в начале 1960-х появилось возможное решение – тут мы и знакомимся с Питером Хиггсом и другими (Браутом, Энглертом, Гуральником, Хагеном и Кибблом). Они предложили то, что сейчас мы называем «механизмом Хиггса». Допустим, говорит они, в природе есть ещё одно, неизвестное пока поле – как и все поля, это некая субстанция, существующая во всех областях пространства – ненулевое и однородное во всём пространстве и времени. Если это поле – которое теперь зовётся полем Хиггса – будет нужного типа, его присутствие заставит частицы W и Z проявить массу, а также позволит физикам вернуть в уравнения массу электрона. Это по-прежнему отложит вопрос о том, почему масса электрона именно такая, но, по крайней мере, тогда можно будет записать уравнения, в которых масса электрона не равна нулю!

В последовавшие десятилетия идею механизма Хиггса проверяли разными способами. Сегодня из подробнейших исследований частиц W и Z известно, что решение загадки, появившейся благодаря слабому взаимодействию, лежит где-то именно в этой области. Но детали этой истории нам неизвестны.

Что такое поле Хиггса, как его понять? Оно невидимо для нас и мы его не чувствуем, как ребёнок не чувствует воздух, или как рыба – воду. И даже больше – ибо, если вырастая, мы начинаем осознавать течение воздуха вокруг наших тел и чувствовать его при помощи осязания, никакие наши чувства не дают нам доступа к полю Хиггса. Мы не только не можем обнаружить его при помощи чувств, мы не можем сделать этого напрямую и при помощи научных инструментов. Так как же мы можем быть уверены, что оно существует? И как мы можем надеяться узнать что-либо о нём?

Аналогия между воздухом и полем Хиггса хорошо работает в следующем примере: если потревожить любую из этих двух сред, они завибрируют, и будут создавать волны. В воздухе такие волны создать легко – можно крикнуть или хлопнуть в ладоши – и тогда наши уши обнаружат эти волны в виде звука. В поле Хиггса волны создать сложнее и сложнее их наблюдать. Для этого понадобится гигантский ускоритель частиц, Большой адронный коллайдер. А для их обнаружения нужны научные инструменты размером с дом, например, ATLAS или CMS.

Как это работает? Хлопок в ладоши обязательно создаст громкие звуковые волны. Столкновение двух высокоэнергетических протонов на БАК создаст очень тихие волны Хиггса, притом необязательно – к этому приведёт лишь одно столкновение из десяти миллиардов. Получившаяся волна будет самой тихой из возможных волн в поле Хиггса (говоря техническим языком, одним квантом этого типа волн). Мы называем эту волну «частицей Хиггса» или «бозоном Хиггса».

Иногда СМИ называют её «частицей бога». Этот термин придумал один издатель, чтобы его книга лучше продавалась, поэтому он происходит из рекламы, а не науки или религии. Учёные этим термином не пользуются.

Создать частицу Хиггса – это только часть процесса, и относительно лёгкая. Гораздо тяжелее обнаружить её. Звуковые волны свободно перемещаются от ваших ладоней через всю комнату до уха другого человека. А частица Хиггса дезинтегрируется на другие быстрее, чем вы сможете сказать «бозон Хиггса». На самом деле, быстрее, чем требуется свету, чтобы пройти диаметр атома. ATLAS и CMS лишь максимально осторожно измеряют остатки взорвавшейся частицы Хиггса и пытаются отмотать произошедшее назад, словно детективы, распутывающие дело по уликам, чтобы определить, могла ли частица Хиггса стать источником этих остатков.

На деле всё ещё сложнее. Мало создать одну частицу Хигса, поскольку её остатки невозможно различить. Часто столкновение двух протонов приводит к появлению обломков, напоминающих то, что получается в результате распада частицы Хиггса. Так как же нам установить, что частица Хиггса возникала? Ключ в том, что хотя частицы Хиггса встречаются редко, но их обломки появляются довольно регулярно, в то время, как другие процессы происходят часто, но более случайным образом. Точно так же, как ваше ухо может распознать поющий голос даже сквозь обильные помехи на радио, экспериментаторы могут разобрать регулярный звон поля Хиггса среди случайной какофонии, созданной другими похожими процессами.

Провернуть всё это оказывается чрезвычайно сложно и трудно. Но это было проделано в рамках триумфа человеческой изобретательности.

Зачем же вообще было заниматься такими геркулесовыми подвигами? Из-за чрезвычайной важности поля Хиггса для самого нашего существования. С этой важностью по величине может сравниться только наше невежество по поводу его происхождения и свойств. Мы даже не знаем, существует ли одно такое поле; их может быть несколько. Поле Хиггса может само по себе оказаться составным, состоящим из других полей. Мы не знаем, почему оно ненулевое, и не знаем, почему оно по-разному взаимодействует с разными частицами, и придаёт, допустим, электрону, массу совсем не такую, как масса верхнего кварка. Поскольку масса играет важную роль не только в определении размеров атомов, но и во множестве других свойств природы, наше понимание Вселенной и нас самих не может быть полным и удовлетворительным, пока поле Хиггса остаётся таким загадочным. Изучение частиц Хиггса – волн в поле Хиггса – даст нам глубокие познания о природе этого поля, точно так же, как о воздухе можно узнать по звуковым волнам, о камне – изучая землетрясения, и о море – наблюдая волны на пляже.

Кто-то из вас наверняка (и справедливо) спросит: это всё очень вдохновляет, но какую пользу это может принести обществу в практическом смысле? Ответ вам может не понравиться. История показывает, что социальные выгоды от исследований фундаментальных вопросов могут не проявляться десятилетиями, даже столетие. Подозреваю, что сегодня вы пользовались компьютером. Сомневаюсь, что когда Томпсон открыл в 1897 году электроны, кто-нибудь из его окружения смог бы догадаться, как сильно электроника сможет изменить общество. Мы не надеемся представить технологии следующего столетия или то, как кажущееся эзотерическим знание, полученное сегодня, может повлиять на далёкое будущее. Инвестиции в фундаментальные исследования – это всегда немножечко азартная игра, но на основании знаний. В худшем случае мы узнаем о природе нечто глубокое и имеющее неожиданные последствия. Такое знание, хотя и не обладающее ценностью в денежном выражении, в обоих смыслах бесценно.

Для краткости я кое-что упростил. Не обязательно всё должно было быть именно так. Было возможно, что волны на поле Хиггса невозможно было бы обнаружить – это могло напоминать попытку создать волны на асфальтовом озере или в густом сиропе. Волны могли бы затухнуть ещё до того, как полностью сформировались. Но мы знаем достаточно о частицах природы, чтобы знать, что такой вариант был бы возможен, только если бы существовали другие неоткрытые частицы и взаимодействия – а какие-то из них обязательно можно было бы найти на БАК. Или же частица (частицы) Хиггса могла бы существовать, но таким образом, что её было бы гораздо сложнее произвести, или она могла дезинтегрироваться каким-то неожиданным образом. Во всех таких случаях могло пройти бы ещё несколько лет до того, как поле Хиггса стало открывать бы свои секреты. Так что мы были готовы ждать, хотя и надеялись, что нам не придётся объяснять СМИ все эти сложности.

Но волновались мы зря.

Открытие частицы Хиггса – это поворотный момент в истории. Триумф тех, кто предложил механизм Хиггса и тех, что работает на БАК, ATLAS и CMS. Но оно не означает завершения наших загадок, связанных с массой известных частиц – это только начало нашей надежды разрешить эти загадки. В будущем энергии и количество столкновений на БАК будут увеличиваться, и ATLAS и CMS будут всесторонне и систематически исследовать частицу Хиггса. То, что они узнают, может позволить нам разрешить загадки этого производящего массу океана, в котором все мы плаваем, и направит нас дальше по эпическому пути, начавшемуся более ста лет назад, который может занять ещё десятилетия и столетия, и простирается за пределы наших сегодняшних горизонтов.

Источник

Что такое Бозон Хиггса? Открытие «частицы Бога» в большом адронном коллайдере

Бозон хиггса что дает. bozon higgsa. Бозон хиггса что дает фото. Бозон хиггса что дает-bozon higgsa. картинка Бозон хиггса что дает. картинка bozon higgsa.

Бозон Хиггса – это элементарная частица, которая была предсказана теоретически еще в 1964 году. Элементарный бозон, возникающий вследствие механизма спонтанного нарушения электрослабой симметрии.

Разберемся подробнее и постарается ответить простыми словами, что же представляет собой бозон Хиггса и что такое Поле Хиггса? Почему бозон Хиггса называют «частицей Бога» и почему это открытие так важно для науки?

Навигация по материалу:

«Стандартная модель» устройства вселенной

Для того, чтобы понять, что такое бозон Хиггса, нам придется обратиться к одной из самых известных теорий, описывающих то, как работает космос: Стандартной модели.

Эта модель пришла к нам в виде физических частиц, полей, которое физики постепенно заполняли строительными блоками по мере исследования Вселенной. Это происходило на протяжении веков и люди достигли существенного прогресса. Сначала мы обнаружили атомы, потом протоны, нейтроны и электроны, и наконец — кварки и лептоны (о них подробнее позже).

Бозон хиггса что дает. standartnaya model ustrojstva vselennoj. Бозон хиггса что дает фото. Бозон хиггса что дает-standartnaya model ustrojstva vselennoj. картинка Бозон хиггса что дает. картинка standartnaya model ustrojstva vselennoj.

Да, можно смести все эти фигуры с доски и сдаться квантовой механике, но физики упорно держатся за Стандартную модель, многие из них ее уже ненавидят и хотят опровержения, которое позволит найти более удобную и красивую теорию о том, как построен мир элементарных частиц. Но пока безуспешно, и открытие бозона Хиггса еще более оттянуло тщательный пересмотр СМ.

Как говорится, ежики плакали и кололись, но продолжали есть кактус. В конце концов, Стандартная модель дает нам глубокое представление о типах материи и сил, более глубокое, чем любая другая физическая теория.

Стандартная модель была разработана в 1970-х годах. Вот вся суть СМ в нескольких предложениях: наша вселенная состоит из 12 различных частиц материи и четырех сил. Среди этих 12 частиц есть шесть кварков и шесть лептонов. Кварки образуют протоны и нейтроны, а члены семьи лептонов включают электрон и электронное нейтрино — его нейтрально заряженный антагонист.

Ученые полагают, что лептоны и кварки являются неделимыми: их нельзя разбить на более мелкие частицы. Наряду с этими частицами, Стандартная модель описывает четыре фундаментальных силы: гравитацию, электромагнитое, сильное и слабое взаимодействие.

Бозон хиггса что дает. Standard Model of Elementary Particles. Бозон хиггса что дает фото. Бозон хиггса что дает-Standard Model of Elementary Particles. картинка Бозон хиггса что дает. картинка Standard Model of Elementary Particles.

Как теория, Стандартная модель работает хорошо, несмотря на ее неспособность вписаться в гравитацию. Благодаря этому, физики предсказали существование определенных частиц до того, как те были обнаружены экспериментально. И вот, на горизонте появился бозон Хиггса. Давайте выясним, как эта частица вписывается в Стандартную модель и Вселенную в целом.

Что такое бозоны и элементарные частицы?

Бозоны — это частицы, которые переносят взаимодействие между другими частицами, таким образом, любое притяжение или отталкивание между частицами происходит за счёт того, что они обмениваются бозонами.

Бозон Хиггса был последней частицей открытой в Стандартной Модели. Это критический компонент теории. Его открытие помогло подтвердить механизм того, как фундаментальные частицы приобретают массу. Эти фундаментальные частицы в Стандартной Модели являются кварками, лептонами и частицами-переносчиками силы.

Существует несколько разновидностей бозонов. Так к примеру широко известный фотон является переносчиком электромагнитного взаимодействия, глюон — сильного взаимодействия, а W- и Z-бозоны — слабого взаимодействия.

Бозон хиггса что дает. ehlementarnye chasticy. Бозон хиггса что дает фото. Бозон хиггса что дает-ehlementarnye chasticy. картинка Бозон хиггса что дает. картинка ehlementarnye chasticy.

Согласно современным представлениям бозоны не должны иметь инертной массы, однако, W- и Z-бозоны ею обладают. Для объяснения этого явления британский физик Питер Хиггс постулировал существование некоего поля, получившего впоследствии его имя, из-за взаимодействия с которым W- и Z-бозоны приобретают инертную массу.

Это можно сравнить с пенопластовыми шариками, рассыпанными на поверхности стола, достаточно лёгкого дуновения ветра и их сметёт, а вот если рассыпать их на поверхность воды, то их движение будет замедленно, для W- и Z-бозонов роль воды выполняет поле Хиггса.

Квантами этого поля являются бозоны Хиггса, причём их может быть несколько видов и именно через них происходит взаимодействие поля с W- и Z- бозонами. На основе этого предположения были разработаны различные модели, описывающий этот бозон, но ни одна из них не могла предсказать его энергию.

Бозон хиггса что дает. poyavlenie bozona higgsa pri stolknovenii dvuh protonov. Бозон хиггса что дает фото. Бозон хиггса что дает-poyavlenie bozona higgsa pri stolknovenii dvuh protonov. картинка Бозон хиггса что дает. картинка poyavlenie bozona higgsa pri stolknovenii dvuh protonov.

В связи с этим поиски бозона Хиггса очень затянулись, учёным пришлось буквально перебирать все возможные варианты. Параллельно развивались модели без бозона Хиггса и между сторонниками двух подходов шли жаркие споры. Наконец в 2012 году на Большом Адронном Коллайдере был обнаружен первый кандидат в бозоны Хиггса с энергией 126 ГэВ, а в 2013 появились сообщения подтверждающие, что это действительно бозон Хиггса.

В 2015 году было заявлено о свидетельствах существования ещё двух видов бозона Хиггса с энергиями в 700 ГэВ и в районе 250-450 ГэВ. Американский физик Леон Макс Ледерман в своей книге назвал бозон Хиггса «goddamn particle» — проклятая или чёртова частица, но редактору это название не понравилось и в окончательной версии книги бозон Хиггса назвали «частицей Бога», и это название закрепилось за ним в массовом сознании.

Теория 1964-го года

В 1964 году шестеро физиков-теоретиков выдвинули гипотезу существования нового поля (подобно электромагнитному), которым заполнено все пространство и решает критическую проблему в нашем понимании вселенной.

Независимо от этого другие физики построили теорию фундаментальных частиц, названную в итоге «Стандартной Моделью», которая обеспечивала феноменальную точность (экспериментальная точность некоторых частей Стандартной Модели достигает 1 к 10 миллиардам. Это равнозначно предсказанию расстояния между Нью-Йорком и Сан-Франциско с точностью около 0.4 мм). Эти усилия оказались тесно взаимосвязаны.

Стандартная Модель нуждалась в механизме приобретения частицами массы. Полевую теорию разработали Питер Хиггс, Роберт Браут, Франсуа Энглер, Джералд Гуралник, Карл Хаген и Томас Киббл.

Какова масса бозона?

К несчастью, теория, предсказывающая бозон, не уточняла его массу. Прошли годы, пока не стало ясно, что бозон Хиггса должен быть экстремально тяжелым и, скорее всего, за пределами досягаемости для установок, построенных до Большого Адронного Коллайдера (БАК).

Помните, что согласно E=mc2, чем больше масса частицы, тем больше энергии надо для ее создания.

В то время, когда БАК начал сбор данных в 2010, эксперименты на других ускорителях показали, что масса бозона Хиггса должна быть больше, чем 115 ГэВ/с2. В ходе опытов на БАК планировалось искать доказательства бозона в интервале масс 115-600 ГэВ/с2 или даже выше, чем 1000 ГэВ/с2.

Бозон хиггса что дает. massa bozona higgsa 1. Бозон хиггса что дает фото. Бозон хиггса что дает-massa bozona higgsa 1. картинка Бозон хиггса что дает. картинка massa bozona higgsa 1.

Каждый год экспериментально удавалось исключать бозоны с бОльшими массами. В 1990 было известно, что искомая масса должна быть больше 25 ГэВ/с2, а в 2003 выяснилось, что больше 115 ГэВ/с2.

Открытие бозона Хиггса в Большом Адронном Коллайдере (БАК)

Есть общепринятая теория того, как устроен мир на мельчайших масштабах и она называется — Стандартная Модель. Согласно этой модели, в нашем мире есть несколько совершенно разных типов вещества, которые регулярно взаимодействуют между собой.

Бозон хиггса что дает. bolshoj adronnyj kollajder. Бозон хиггса что дает фото. Бозон хиггса что дает-bolshoj adronnyj kollajder. картинка Бозон хиггса что дает. картинка bolshoj adronnyj kollajder.

Рассуждая о взаимодействиях, весьма удобно применять такие параметры, как масса, скорость и ускорение, что позволяет называть элементарные частицы чем-то вроде «частиц-переносчиков». Всего выделяют в данной модели 12 таких разновидностей.

11 из 12 частиц Стандартной модели наблюдались ранее. 12-ая частица — бозон, соответствующий полю Хиггса, придает многим остальным частицам массу, ограничивая их скорости движения. С некоторыми же частицами поле Хиггса не взаимодействует вовсе. Например, не оказывает влияния на фотоны и их масса равна нулю.

Теоретически бозон Хиггса предсказали в далеком 1964 году, но вот доказать его существование экспериментально смогли лишь в 2012 году. Все эти годы бозон искали не покладая рук!

До того, как заработал БАК, в Европейской организации по ядерным исследованиям (ЦЕРН) был электрон-позитронный коллайдер, в Иллинойсе был Теватрон, но этих мощностей было недостаточно, чтобы провести необходимые эксперименты. Хотя, эксперименты все же давали определенные результаты.

Бозон Хиггса — тяжелая частица и обнаружить его крайне непросто. Суть эксперимента очень проста, но вот реализация с последующей интерпретацией результатов — настоящая проблема.

Бозон хиггса что дает. otkrytie bozona higgsa. Бозон хиггса что дает фото. Бозон хиггса что дает-otkrytie bozona higgsa. картинка Бозон хиггса что дает. картинка otkrytie bozona higgsa.

Итак, берут два протона и разгоняются до околосветовой скорости. В какой-то момент времени их сталкивают «лоб в лоб». Протоны «в шоке» от такого удара начинают рассыпаться на вторичные частицы. В ходе этого процесса и пытались зафиксировать бозон Хиггса.

Усложняет эксперимент тот факт, что существование бозона можно подтвердить лишь косвенно. Период существования бозон Хиггса критически мал, как и расстояние между точками возникновения и исчезновения. Измерить этот промежуток времени и расстояние — невозможно, но! Бозон Хиггса не исчезает бесследно и его кратковременное пребывание доказывается за счет «продуктов распада».

Это все равно, что искать иглу в стоге сена. Нет, в огромном стоге сена. Нет, в тысячах огромных стогов сена! Дело в том, что бозон Хиггса распадается с разной вероятностью на разные комбинации частиц. Например, это могут быть кварк-антикварк, W-бозоны или вообще тау-частицы.

В некоторых случаях распад трудно отличить от распада других частиц, в других случаях вообще не успевают фиксировать происходящее. Как стало известно, детекторы лучше всего фиксируют превращение бозона Хиггса в 4 лептона (фундаментальные частицы), но вероятность такого события составляет лишь 0,013%.

Полгода экспериментов на БАК и миллионы столкновений за одну секунду дали необходимый результат. Ученые зафиксировали те самые 4 лептона (целых пять раз).

Зафиксировать это позволили гигантские детекторы ATLAS и CMS, которые выявили частицу с энергией 125ГэВ (единица измерения в квантовой физике). Именно этот показатель соответствовал теоретическому предсказанию бозона Хиггса.

Вселенная колеблется на грани стабильности?

Спустя несколько месяцев после объявления об открытии физики сообщили о неожиданной находке. Бозон, который они наблюдали в ЦЕРН, похоже, распадался двумя разными способами.

Некоторые посчитали, что это две разные частицы Хиггса. Другие же решили, что это статистическое совпадение, так как разница между частицами слишком незначительна.

Бозон хиггса что дает. fejnmanovskaya diagramma. Бозон хиггса что дает фото. Бозон хиггса что дает-fejnmanovskaya diagramma. картинка Бозон хиггса что дает. картинка fejnmanovskaya diagramma.

Итак, почему масса частицы имеет значение? Оказывается, передача такой большой массы бозоном Хиггса указывает на то, что вакуум Вселенной может быть нестабилен по своей природе, существуя в постоянном «метастабильном» состоянии.

Многие физики обсуждали вероятность того, что Вселенная долгое время колеблется на грани стабильности. В частности, физики Фрэнк Вильчек и Майкл Тернер, опубликовавшие в 1982 году статью в журнале Nature, предположили неутешительный сценарий: где-нибудь во Вселенной без какого-либо предупреждения может зародиться пузырь истинного вакуума, который будет передвигаться через пространство на скорости света, но прежде чем мы осознаем, что происходит, наши фотоны распадутся.

Как бы то ни было, открытие бозона Хиггса положило начало новым исследованиям и иному пониманию реальности. Ученые надеются, что это открытие приведет к разработке симметричной или даже суперсимметричной теории, которая расширит Стандартную модель и закроет присутствующие в ней дыры. Это, в свою очередь, поможет выяснить, что же такое темная материя — поле, которое, похоже, более неуловимо, чем поле Хиггса.

Польза которую несет открытие бозона Хиггса

Человеку, далекому от науки вообще и от физики в частности поиски некой элементарной частицы могут показаться бессмысленными, но открытие бозона Хиггса имеет немалое значение для науки. Прежде всего, наши знания о бозоне помогут при расчетах, которые осуществляются в теоретической физике при изучении строения Вселенной.

В частности, физиками было предположено, что бозонами Хиггса заполнено все окружающее нас пространство. При взаимодействии с другими элементарными частицами бозоны сообщают им свою массу и если есть возможность вычислить массу определенных элементарных частиц, то можно рассчитать и массу бозона Хиггса. А если у нас есть масса бозона Хиггса, то с ее помощью идя в обратную сторону, мы также можем рассчитывать массы других элементарных частиц.

Разумеется, все это очень дилетантские рассуждения с точки зрения академической физики, но ведь и журнал наш на то и научно-популярный, чтобы говорить о серьезных научным материях простым и понятным языком.

Угроза эксперементов с бозоном Хиггса (рекомендуем ознакомиться!)

Определения опасения по поводу бозона Хиггса и экспериментов с ним были высказаны британским ученым Стивеном Хокингом.

Согласно Хокингу, бозон Хиггса является крайне не стабильной элементарной частичкой и в результате определенного стечения обстоятельств может привести к распаду вакуума и полному исчезновению таких понятий как пространство и время. Но теоретически, для того, чтобы произошло нечто подобно необходимо построить коллайдер размером со всю нашу планету.

Рекомендуем посмотреть это видео о работе Большого Адронного Коллайдера в ЦЕРНе:

Известные свойства бозона Хиггса

Исследования продолжаются

Открытие бозона Хиггса можно смело назвать одним из самых важных открытий в нашей недолгой истории. Когда-то давно любознательность наших предков вывела их из Африки и побудила исследовать мир. Сегодня мы знаем о четырех фундаментальных взаимодействиях природы, которые помогают нам понять, как устроен мир в тончайших деталях.

Исследования продолжаются, и ученые, работающие на Большом адронном коллайдере в ЦЕРНе и других ускорителях частиц, достигают все больших энергий — и даже добились создания капель кварк-глюонной плазмы (сегодня она считается первичным веществом, которым было заполнено все пространство сразу после Большого взрыва).

К 2030 году в Китае планируют построить самый большой и мощный ускоритель частиц, который поможет проводить новые эксперименты на более высоких энергиях. Будем надеяться, что он поможет заглянуть глубже в саму структуру реальности. А пока нам остается только ждать и следить за результатами экспериментов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *