Боковое ускорение автомобиля что это
Автомобильный справочник
для настоящих любителей техники
Динамика поперечного перемещения автомобиля
На страницах этого справочник мы уже неоднократно упоминали о динамике поперечного перемещения автомобиля. От того, как автомобиль может сопротивляться поперечному перемещению, во многом зависит его поведение на дороге. В этой статье мы подробно поговорим, что представляет собой динамика поперечного перемещения автомобиля.
Диапазоны бокового ускорения
Диапазон от 0 до 0,5 м/с 2 известен под названием диапазона малого сигнала. В этом диапазоне явление возникает при прямолинейном движении под действием таких возмущений, как неровности дороги и боковой ветер. Ветровые возмущения возникают вследствие порывов ветра и при въезде в закрытые от ветра зоны и выезде из них.
Диапазон от 0,5 до 4 м/с 2 известен под названием линейного диапазона, поскольку поведение автомобиля в этом диапазоне может быть описано при помощи линейной, одноколейной модели. К типичным маневрам, связанным с динамикой поперечного движения, относятся резкое манипулирование рулем, перестроения из ряда в ряд, а также комбинации маневров, связанных с изменением динамики как продольного, так и поперечного движения, например, вследствие реакций на изменения нагрузки при прохождении поворотов.
Боковое ускорение свыше 6 м/с 2 достигается только в экстремальных ситуациях, поэтому рассматривается как предельный диапазон. В этом диапазоне характеристики автомобиля в основном нелинейные и оказывают влияние на устойчивость автомобиля. Этот диапазон достигается на спортивных трассах или в ситуациях, в условиях обычного дорожного движения приводящих к авариям.
Одноколейная линейная модель
Из одноколейной линейной модели могут быть получены важные выводы, касающиеся динамических характеристик поперечного движения. В одноколейной линейной модели динамические свойства одной оси и ее колес сведены в одно эффективное колесо. В простейшем варианте, как показано здесь, рассматриваемые характеристики находятся в линейном диапазоне, что объясняет, почему модель этого типа называется одноколейной линейной моделью. Наиболее важными модельными предположениями являются следующие:
Способность автомобиля к восстановлению прямолинейного движения
На рис. «Одноколейная модель заноса в установившемся состоянии» представлена однолинейная модель для условий быстрого и медленного заноса. Результатом этого представления являются следующие соотношения, описывающие кинематику углов скольжения:
Вместе с балансом моментов можно вычислить изменение угла поворота рулевого колеса, связанное с увеличением бокового ускорения, в условиях маневра с заносом при постоянном радиусе. Это дает определение градиента самовыравнивания управляемых колес EG:
Конструкция всех легковых автомобилей в линейном диапазоне бокового ускорения предусматривает недостаточную поворачиваемость. Значение EG для легковых автомобилей составляет около 0,25 градус⋅с 2 /м.
В отношении динамики бокового движения градиент самовыравнивания управляемых колес характеризует устойчивость и демпфирование автомобиля. Кроме того, значение градиента самовыравнивания для среднего водителя становится очевидным, поскольку угол поворота колес увеличивается с ростом скорости прохождения поворота. Это привлекает внимание водителя к возрастающему боковому ускорению.
Градиент угла дрейфа (SG) можно вычислить, воспользовавшись схемой, представленной на рис. «Одноколейная модель заноса в установившемся состоянии». В целях повышения устойчивости автомобиля градиент угла дрейфа должен быть как можно меньше.
SG = dβ/day = mlv/Chl
Коэффициент усиления рыскания
На рис. «Зависимость коэффициента усиления рыскания от скорости» показан коэффициент усиления рыскания для автомобиля, имеющего тенденцию к избыточной поворачиваемости (EG 0). При высоких скоростях движения приемлемой является только недостаточная поворачиваемость, обеспечивающая требуемую динамику автомобиля даже во время движения по прямой. Скорость, при которой автомобиль, имеющий тенденцию к недостаточной поворачиваемости, демонстрирует максимальную реакцию рыскания, известна как характеристическая скорость vchar. В линейной одноколейной модели эта скорость выражается как:
Коэффициент демпфирования
Из линейной одноколейной модели выведено следующее уравнение равновесия сил:
Для баланса моментов:
Коэффициент демпфирования D возмущения в отношении динамики поперечного движения может быть выведен из двух следующих уравнений:
Недемпфированная собственная частота выражается следующим уравнением:
Коэффициент демпфирования автомобиля может быть определен, например, из реакции рыскания на резкий поворот рулевого колеса или иное ступенчатое входное воздействие. При разработке конструкции автомобиля разработчики стремятся получить как можно более высокий коэффициент демпфирования.
На рис. «Коэффициент демпфирования и коэффициент рыскания» показаны коэффициенты демпфирования и усиления рыскания для различных градиентов самовыравнивания. При этом имеет место следующий конфликт целей:
Диаграмма боковой подвижности автомобиля
Еще одной важной переменной, определяющей сбалансированность автомобиля, является общее передаточное отношение рулевого механизма il. Угол поворота рулевого колеса il вычисляется, исходя из угла поворота оси, как:
Это дает следующее уравнение для максимального коэффициента усиления рыскания:
Этот максимум построен на диаграмме боковой подвижности (рис.»Диаграмма боковой подвижности» ) в функции передаточного отношения рулевого механизма. Дополнительно на диаграмме показаны изолинии EG. Вдоль этих кривых градиент самовыравнивания постоянен. На этой диаграмме могут быть построены желаемые диапазоны коэффициента усиления рыскания и передаточного отношения рулевого механизма с Целью определения необходимых градиентов самовыравнивания.
Если в автомобиле изменяется только передаточное отношение рулевого механизма, максимальный коэффициент усиления рыскания можно определить при помощи диаграммы боковой подвижности, сдвигая базовую линию вдоль изолиний EG. Если имеет место изменение характеристик оси, сдвиг осуществляется вдоль вертикальной оси.
Динамика поперечного движения автомобиля
Ветер может вызывать динамические эффекты в боковом направлении. Реакция автомобиля на эти внешние воздействия проявляется в виде отклонения от желаемой траектории движения, бокового ускорения и изменения углов рыскания и крена. Чтобы противодействовать этим изменениям, водитель пытается выполнить корректирующие действия. Следовательно, необходимо учитывать скорость реакции водителя, а также способность автомобиля к коррекции. Согласно результатам исследования, непосредственная реакция автомобиля на боковой ветер является основной переменной величиной для субъективной оценки общей устойчивости автомобиль под действием бокового ветра. Это дает преимущество, заключающееся в том, что реакцию автомобиля на боковой ветер можно эффективно оценить посредством анализа.
Характеристически средний водитель воспринимает два состояния, вызываемые возмущениями в виде бокового ветра:
В автомобилестроении стремятся свести к минимуму эффекты возмущений, вызываемых ветровыми нагрузками, учитывая следующие факторы:
Аэродинамические силы и моменты
Когда автомобиль движется со скоростью v при ветре, имеющем скорость vw, на него воздействует ветер с результирующей скоростью vr. При наличии бокового ветра угол воздействия τ в общем случае отличен от 0 градусов, что приводит к возникновению поперечной силы Fs и момента рыскания Мz, воздействующих на автомобиль.
В аэродинамике стандартной практикой является указание вместо сил и моментов безразмерных коэффициентов. Отсюда:
Момент Мz и поперечная сила Fs, определенные в средней точке колесной базы, могут быть представлены единой поперечной силой Fs, когда точка приложения воздействия совпадает с точкой приложения давления D (рис. «Автомобиль под действием бокового ветра» ). Расстояние d между аэродинамической опорной точкой В и точкой приложения давления D вычисляется следующим образом:
Чтобы в максимальной степени уменьшить влияние аэродинамических эффектов, следует принять меры к тому, чтобы точка приложения давления D находилась как можно ближе к центру тяжести автомобиля. Это существенно снизит эффективное влияние момента.
На рис. «Коэффициент поперечной силы и точка приложения давления» представлены аэродинамические коэффициенты для двух наиболее типичных кузовов автомобиля, универсала и седана, в функции угла воздействия τ. Результирующее расстояние d для универсалов значительно меньше, чем для седанов (см. рис. «Автомобиль под действием бокового ветра» ). Для автомобилей с центром тяжести, расположенным посередине колесной базы, конструкция универсала, следовательно, менее чувствительна к боковому ветру, чем у седана.
Поведение в повороте
Центробежная сила, действующая в повороте (рис. «Действие центробежной силы в повороте» ):
Боковой крен кузова в повороте
При движении в повороте центробежная сила, приложенная в центре тяжести автомобиля, наклоняет кузов. Величина крена зависит от упругих характеристик подвески и ее восприимчивости к деформации, а также от плеча действия центробежной силы (расстояние между осью крена и центром тяжести автомобиля). Ось крена является одновременно мгновенной осью вращения кузова относительно поверхности дороги. Подобно всем жестким телам, кузов автомобиля подвергается совместному воздействию на него скручивающих и поворачивающих усилий, усугубляющих крен; это движение дополняется боковым смещением вдоль мгновенной оси.
Чем ближе расположена ось крена к центру тяжести автомобиля, тем выше его поперечная устойчивость и меньше крен при движении в повороте. Однако обычно это вызывает соответствующее перемещение вверх колес, что приводит к изменению колеи и оказывает негативное влияние на безопасность движения. Поэтому следует стремиться к тому, чтобы высокое расположение мгновенного центра крена сочеталось с минимальными изменениями колеи автомобиля. Таким образом, целью конструкторов является расположение мгновенных осей наклонов колес как можно выше относительно кузова и одновременно как можно дальше от него.
Таблица «Критические скорости при прохождении поворотов»
Часто для нахождения (приблизительного) оси крена определяются центры вращения (центры крена) так называемого эквивалентного кузова. При этом рассматривают перемещение кузова в двух вертикальных относительно дороги плоскостях, проходящих через переднюю и заднюю оси автомобиля. Центры крена — это те гипотетические точки на кузове, которые остаются неподвижными при крене. Ось крена, в свою очередь, представляет собой линию, соединяющую эти точки. Графическое представление центров крена базируется на правиле, согласно которому мгновенные центры вращения трех систем в состоянии относительного движения лежат на одной линии.
Сложность операций, требующихся для более точного определения пространственных соотношений, описывающих движение колеса, делает целесообразным использование трехмерной модели.
Активная подвеска
Активная подвеска, как и многие другие новации, была создана в мире Гран При. Теперь она постепенно становится, все более популярной при производстве обычных транспортных средств. Интересно отметить, что по мере того как некоторые команды, принимавшие участие в гонках «Формула-1», совершенствовали подвеску, правила изменились (1993-1994 гг.), чтобы предотвратить ее использование!
Обычные системы подвески — это всегда компромисс между мягкими пружинами для комфорта и более жестким подпружиниванием для лучшей устойчивости движения на поворотах. Система подвески должна выполнять четыре главных функции:
Это означает, что некоторые функции должны быть приняты с оговорками, чтобы другие выполнялись в большей степени.
Функционирование активной подвески
Активная подвеска позволяет получить лучшее сочетание из обоих миров. Активная подвеска получается при замене обычных пружин на гидравлические узлы двойного действия. Ими управляет блок управления (ECU), который получает сигналы от различных датчиков. Давление масла сверх 150 бар поставляется гидравлическим узлам от насоса. Клапан с сервоприводом контролирует давление масла, которое является, возможно, самым критическим параметром системы.
Главные выгоды от применения активной подвески состоят в следующем:
Датчики, приводы и функционирование системы активной подвески
Чтобы максимально эффективно управлять гидравлическими узлами, ECU должна «знать» определенную информацию. Она поступает в систему от датчиков, расположенных в различных частях транспортного средства.
Датчик нагрузки
Датчик нагрузки используется, чтобы определить фактическую нагрузку на каждый гидравлический узел.
Смещение и вертикальное ускорение
В качестве этого датчика могут использоваться простые переменные резисторы или более точные и чувствительные линейные датчики типа LVDT.
Боковое и продольное ускорение
Ускорение может быть определено при помощи маятникового датчика, использующего тензодатчики, связанные с массой, или устройства, подобные датчику ударов в двигателе.
Датчик заноса
Отклонение от курса может быть определено по боковому ускорению, если датчик установлен в передней или задней части транспортного средства.
Положение руля
Помимо положении руля, скорость изменения направления движения определяется по сигналу от датчика вращения. Это устройство может быть датчиком на основе луча света с детектором или чем-либо подобным. Если скорость изменения положения руля окажется за определенным порогом, то система переключится к более жесткому регулированию подвески.
Скорость транспортного средства
Скорость транспортного средства измеряется с помощью стандартною датчика, который используется для спидометра.
Датчик положения дроссельного клапана
Датчик положения дроссельного клапана аналогичен существующим потенциометрам. Он показывает намерение водителя ускорить или замедлить движение, позволяя подвеске перейти в более жесткий режим, если для этого предусмотрен соответствующий механизм.
Выбор режима подвески водителем
В системе предусмотрен выключатель, позволяющий водителю выбрать мягкие или жесткие параметры настройки системы. Но даже если будет выбрано мягкое регулирование, то система переключится на более жесткое при определенных эксплуатационных условиях.
Рис. Общая компоновка системы активной подвески и используемые датчики
На схеме компоновки системы активной подвески показано упрошенное представление гидравлического узла. По сути, это гидравлический домкрат, который может обеспечивать очень высокое давление масла, подаваемого к верхней или нижней камере. Функционирование всей системы происходит следующим образом. В момент, когда колесо встречает на дороге выпуклость, возникает вертикальное ускорение вверх и увеличение вертикальной нагрузки. Эта информация подастся к ECU, который вычисляет идеальное смешение колеса. Сигнал управления от ECU посылается сервоклапанам, которые управляют положением главных гидравлических узлов. Поскольку этот процесс может происходить сотни раз в секунду, колесо может точно следовать за контуром дорожной поверхности, Это смягчает действие нежелательных нагрузок на корпус автомобиля.
Благодаря анализу информации от других датчиков, вроде бокового датчика ускорения (данные о движении на повороте) и продольного датчика (информация о продольном торможении или ускорении), приводы могут перемещаться так, чтобы всегда обеспечивать максимальную устойчивость.
Активная подвеска обеспечивает комфортное движение, и в этом залог ее будущего. Так как цены на комплектующие падают, система скоро станет достоянием большого количества транспортных средств. Ожидается, что в ближайшем будущем активной подвеской могут быть оборудованы даже внедорожники.
Теория движения автомобиля: основные элементы
Силы, действующие на автомобиль
На автомобиль, независимо от того, движется он или неподвижен, действует сила тяжести (вес), направленная отвесно вниз.
Сила тяжести прижимает колеса автомобиля к дороге. Равнодействующая этой силы, размещена в центре тяжести. Распределение веса автомобиля по осям зависит от расположения центра тяжести. Чем ближе к одной из осей расположен центр тяжести, тем больше будет нагрузка на эту ось. На легковых автомобилях нагрузка на оси распределяется примерно поровну.
Большое значение на устойчивость и управляемость автомобиля имеет расположение центра тяжести не только в отношении продольной оси, но и по высоте. Чем выше центр тяжести, тем менее устойчивым будет автомобиль. Если автомобиль находится на горизонтальной поверхности, то сила тяжести направлена отвесно вниз. На наклонной поверхности она раскладывается на две силы (см. рисунок): одна из них прижимает колеса к поверхности дороги, а другая стремится опрокинуть автомобиль. Чем выше центр тяжести и чем больше угол наклона автомобиля, тем скорее нарушится устойчивость и автомобиль может опрокинуться.
Во время движения, кроме силы тяжести, на автомобиль действует и ряд других сил, на преодоление которых затрачивается мощность двигателя.
На рисунке показана схема сил, действующих на автомобиль во время движения. К ним относятся:
Движение автомобиля возможно только при условии, что его колеса будут иметь достаточное сцепление с поверхностью дороги.
Если сила сцепления будет недостаточной (меньше величины силы тяги на ведущих колесах), то колеса пробуксовывают.
Сила сцепления с дорогой зависит от веса, приходящегося на колесо, от состояния покрытия дороги, давления воздуха в шинах и рисунка протектора.
Для определения влияния состояния дороги на силу сцепления служит коэффициент сцепления, который определяют делением силы сцепления ведущих колес автомобиля на вес автомобиля, приходящийся на эти колеса.
Коэффициент сцепления зависит от вида покрытия дороги и от его состояния (наличия влаги, грязи, снега, льда); величина его приведена в таблице (см. рисунок).
На дорогах с асфальтобетонным покрытием коэффициент сцепления резко уменьшается, если на поверхности имеется влажная грязь и пыль. В этом случае грязь образует пленку, резко уменьшающую коэффициент сцепления.
На дорогах с асфальтобетонным покрытием в жаркую погоду появляется на поверхности маслянистая пленка из выступающего битума, снижающая коэффициент сцепления.
Уменьшение коэффициента сцепления колес с дорогой наблюдается также при увеличении скорости движения. Так, при возрастании скорости движения на сухой дороге с асфальтобетонным покрытием с 30 до 60 км/ч коэффициент сцепления уменьшается на 0,15.
Разгон, ускорение, накат
Мощность двигателя затрачивается на приведение во вращение ведущих колес автомобиля и преодоление сил трения в механизмах трансмиссии.
Если величина усилия, с которым вращаются ведущие колеса, создавая тяговую силу, будет больше чем суммарная сила сопротивления движению, то автомобиль будет двигаться с ускорением, т.е. с разгоном.
Ускорением называется прирост скорости за единицу времени. Если тяговое усилие равно силам сопротивления движению, то автомобиль будет двигаться без ускорения с равномерной скоростью. Чем выше максимальная мощность двигателя и меньше величина суммарных сил сопротивления, тем быстрее автомобиль достигнет заданной скорости.
Кроме того, на величину ускорения влияет вес автомобиля, передаточное число коробки передач, главной передачи, количество передач и обтекаемость автомобиля.
Во время движения накапливается определенный запас кинетической энергии, и автомобиль приобретает инерцию. Благодаря инерции автомобиль может двигаться некоторое время с отключенным двигателем – накатом. Движение накатом используют для экономии топлива.
Торможение автомобиля
Торможение автомобиля имеет большое значение для безопасности движения и зависит от его тормозных качеств. Чем лучше и надежнее тормоза, тем быстрее можно остановить движущийся автомобиль и тем с большей скоростью можно двигаться, а следовательно, и больше будет его средняя скорость.
Во время движения автомобиля накопленная кинетическая энергия поглощается при торможении. Торможению помогают силы сопротивления воздуха, сопротивления качению и сопротивления подъему. На уклоне силы сопротивления подъему отсутствуют, а к инерции автомобиля добавляется составляющая сила тяжести, которая затрудняет торможение.
При торможении между колесами и дорогой возникает тормозная сила, противоположная направлению силы тяги. Торможение зависит от соотношения между тормозной силой и силой сцепления. Если сила сцепления колес с дорогой будет больше тормозной силы, то автомобиль затормаживается. Если тормозная сила будет больше силы сцепления, то при заторможенных колесах произойдет их скольжение относительно дороги. В первом случае при торможении колеса катятся, постепенно замедляя вращение, а кинетическая энергия автомобиля превращается в тепловую энергию, нагревающую тормозные колодки и диски (барабаны). Во втором случае колеса перестают вращаться и будут скользить по дороге, поэтому большая часть кинетической энергии будет превращаться в тепло трения шин о дорогу. Торможение с остановившимися колесами ухудшает управляемость автомобиля, особенно на скользкой дороге, и приводит к ускоренному износу шин.
Наибольшую тормозную силу можно получить только тогда, когда тормозные моменты на колесах будут пропорциональны нагрузкам, приходящимся на них. Если такая пропорциональность не будет соблюдена, то тормозная сила на одном из колес не будет полностью использована.
Эффективность торможения оценивается по тормозному пути и величине замедления.
Тормозной путь – это расстояние, которое проходит автомобиль от начала торможения до полной остановки. Замедление автомобиля – это величина, на которую уменьшается скорость автомобиля за единицу времени.
Управляемость автомобиля
Под управляемостью автомобиля понимают его способность изменять направление движения.
Во время движения автомобиля по прямой очень важно, чтобы управляемые колеса не поворачивались произвольно и водителю не нужно было бы затрачивать усилия для удержания колес в нужном направлении. На автомобиле предусмотрена стабилизация управляемых колес в положении движения в прямом направлении, которая достигается продольным углом наклона оси поворота и углом между плоскостью вращения колеса и вертикалью. Благодаря продольному наклону колесо устанавливается так, что его точка опоры по отношению оси поворота снесена назад на величину а и его работа подобна ролику (см. рисунок).
При поперечном наклоне повернуть колесо всегда труднее, чем вернуть его в исходное положение – движения по прямой. Это объясняется тем, что при повороте колеса передняя часть автомобиля приподнимается на величину б (водитель прилагает сравнительно большее усилие к рулевому колесу).
Для возвращения управляемых колес в положение, соответствующее движению по прямой, вес автомобиля помогает поворачиванию колес и водитель прикладывает к рулевому колесу небольшое усилие.
На автомобилях, особенно у тех, где давление воздуха в шинах невелико, возникает боковой увод. Боковой увод возникает в основном под действием поперечной силы, вызывающей боковой прогиб шины; при этом колеса катятся не по прямой, а смещаются в сторону под действием поперечной силы (см. рисунок).
Оба колеса передней оси имеют одинаковый угол увода. При уводе колес меняется радиус поворота, который увеличивается, уменьшая поворачиваемость автомобиля, а устойчивость движения при этом не изменяется.
При уводе колес задней оси радиус поворота уменьшается, особенно это заметно, если угол увода задних колес больше, чем у передних, стабильность движения нарушается, автомобиль начинает «рыскать» и водителю все время приходится подправлять направление движения. Для уменьшения влияния увода на управляемость автомобиля давление воздуха в шинах передних колес должно быть несколько меньше, чем у задних. Увод колес будет тем больше, чем большей будет боковая сила, действующая на автомобиль, например, на крутом повороте, где возникают большие центробежные силы.
Занос автомобиля
Заносом называется боковое скольжение задних колес при продолжающемся поступательном движении автомобиля. Иногда занос может привести к повороту автомобиля вокруг своей вертикальной оси.
Занос может возникать в результате ряда причин. Если резко повернуть управляемые колеса, то может оказаться, что инерционные силы станут больше, чем сила сцепления колес с дорогой, особенно часто это случается на скользких дорогах.
При неодинаковых тяговых или тормозных силах, приложенных на колеса правой и левой сторон, действующих в продольном направлении, возникает поворачивающий момент, приводящий к заносу. Непосредственной причиной заноса при торможении являются неодинаковые тормозные силы на колесах одной оси, неодинаковое сцепление колес правой или левой стороны с дорогой или неправильное размещение груза относительно продольной оси автомобиля. Причиной заноса автомобиля на повороте может быть также торможение его, так как при этом к поперечной силе добавляется продольная сила и их сумма может превысить силу сцепления, препятствующую заносу (см. рисунок).
Чтобы предотвратить начавшийся занос автомобиля, необходимо: прекратить торможение, не выключая сцепление (на автомобилях с МКПП); повернуть колеса в сторону заноса.
Эти приемы выполняют сразу же, как только начался занос. После прекращения заноса нужно выровнять колеса, чтобы занос не начался в другом направлении.
Чаще всего занос получается при резком торможении на мокрой или обледенелой дороге, особенно быстро нарастает занос на большой скорости, поэтому при скользкой или обледенелой дороге и на поворотах нужно уменьшать скорость, не применяя торможение.
Проходимость автомобиля
Проходимостью автомобиля называется его способность двигаться по плохим дорогам и в условиях бездорожья, а также преодолевать различные препятствия, встречающиеся на пути. Проходимость определяется:
Основным фактором, характеризующим проходимость, является соотношение между наибольшей тяговой силой, используемой на ведущих колесах, и силой сопротивления движению. В большинстве случаев проходимость автомобиля ограничивается недостаточной силой сцепления колес с дорогой и в связи с этим невозможностью использовать максимальную тяговую силу. Для оценки проходимости автомобиля по грунту пользуются коэффициентом сцепного веса, определяемым делением веса, приходящегося на ведущие колеса, на общий вес автомобиля. Наибольшую проходимость имеют автомобили, у которых все колеса являются ведущими. В случае применения прицепов, увеличивающих общий вес, но не изменяющих сцепной вес, проходимость резко снижается.
На величину сцепления ведущих колес с дорогой значительное влияние оказывает удельное давление шин на дорогу и рисунок протектора. Удельное давление определяется давлением веса, приходящегося на колесо, на площадь отпечатка шины. На рыхлых грунтах проходимость автомобиля будет лучше, если удельное давление будет меньше. На твердых и скользких дорогах проходимость улучшается при большем удельном давлении. Шина с крупным рисунком протектора на мягких грунтах будет иметь отпечаток большей площади и имеет меньшее удельное давление, а на твердых грунтах отпечаток этой шины будет меньшей площади и удельное давление увеличивается.
Проходимость автомобиля по габаритным размерам определяется по: