Бог не играет в кости эйнштейн что значит
В чем смысл фразы Эйнштейна «Бог не играет в кости»?
Эйнштейн был ярым приверженцем детерминизма (учение о закономерности и причинной обусловленности всех событий и явлений) не на пустом месте, но когда речь заходила о квантовом мире, который жил по своим законам и плевал на человеческую логику, то физик приходил в ярость.
© 1zoom.me
Детерминизм применим на крупных масштабах: зная о том, что происходит с объектом во Вселенной в настоящее время, ученые могут предсказать его поведение на сотни, тысячи и миллионы лет вперед.
Вы можете предсказать фазы Луны, узнать когда к нам приблизится какая-то комета и т.д.
Микромир же подчиняется принципу неопределенности, согласно которому невозможно определить одновременно положение и скорость частицы. Как только у частицы появляется наблюдатель, ее положение становится неопределенным. Будущее микромира предсказать просто невозможно.
Однако здравый смысл подсказывает, что макромир состоит из микромира, а значит должна существовать заветная теория, объединяющая эти Вселенные. Поиски лишь усугубляли ситуацию и друг Эйнштейна Макс Борн отказался от детерминизма, оставив физика наедине с его убеждениями.
© fineartamerica.com
Альберт Эйнштейн не мог смириться с тем, что на уровне частиц законы Ньютона перестают работать и продолжал настаивать, что должна все же существовать какая-то систематика. В 1926 году, прочитав новое исследование друга Борна, Эйнштейн написал следующее:
«Квантовая механика заслуживает большого уважения. Но внутренний голос подсказывает мне, что это еще не идеал. Теория многое открывает, но не приближает к разгадке тайны Всевышнего. Что касается меня, то я по крайней мере убежден, что Он не бросает кости».
Позже фразу исказили до «Бог не играет в кости», но смысл сохранился.
В Бога Эйнштейн не верил и в данном случае он был лишь удобной метафорической конструкцией. Что касательно игры в кости, то физик не желал принимать случайности во Вселенной, но он серьезно ошибся. «Бог» — играет в кости.
Как Эйнштейн примирил религию и науку
«Бог не играет в кости», — сказал как-то Эйнштейн. Но что ученый вкладывал в эти слова? Разбираемся вместе с обозревателем Nautilus Брайаном Галлахером, что говорил Эйнштейн о боге и религии, почему ученый считал, что проблема Бога и устройства Вселенной слишком сложна для нашего ограниченного ума, существует ли вообще конфликт науки и религии и что общего у Эйнштейна, Спинозы и Илона Маска.
Отношение Альберта Эйнштейна к религии было своеобразным. Из современников его можно сравнить с Илоном Маском. Недавно на конференции с Axios у него спросили, верит ли он в Бога, — на что генеральный директор компаний SpaceX и Tesla сделал небольшую паузу, окинул взглядом аудиторию и произнес такую фразу: «Я думаю, что есть какое-то объяснение всей этой вселенной. То, что вы можете называть богом».
Эйнштейн называл это Богом.
Немецкий еврей, физик, известный открытием специальной и общей теории относительности и узнаваемый по своей безумной копне седых волос, говоря о непредсказуемой природе квантовой механики, он однажды произнес фразу «Бог не играет в кости». Эйнштейн полагал, что если и существует некое универсальное уравнение для описания вселенной, то в нем нет места случайности, поскольку, в таком случае, это уравнение было бы недостаточно полным (как копенгагенское объяснение квантовой механики). Интересно, что в настоящее время физики сходятся во мнении, что он был неправ: Бог – это и есть случай. Стивен Хокинг как-то заметил:
«Все доказательства указывают на то, что он ([Бог]) заядлый игрок, который играет в кости при каждом возможном случае».
«Я верю в Бога Спинозы, который проявляет себя в закономерной гармонии бытия, но вовсе не в Бога, который хлопочет о судьбах и делах людей»
Эта фраза из письма, которое Эйнштейн адресовал философу Эрику Гаткинду после прочтения его книги «Выбери жизнь: Библейский призыв к восстанию» («Choose Life: The Biblical Call to Revolt») – поверхностной критики религии в стиле Ричарда Докинза, Сэма Харриса или Кристофера Хитченса.
«Слово „Бог“ для меня, − писал Эйнштейн, − не более чем выражение и продукт человеческих слабостей, Библия — свод благородных, но все же примитивных легенд. Никакая интерпретация, даже самая изощрённая, не сможет для меня это изменить».
На протяжении десятилетий взгляды Эйнштейна на религию представлялись обществу крайне запутанными: в одной беседе у Эйнштейна Бог означает одно; в другой – совершенно иное. Читающим его письмо Гаткинду Эйнштейн видится атеистом. Но если послушать, что говорит Эйнштейн в других интервью, становится ясно, что это не совсем так.
«Я не атеист, − сказал он в интервью, опубликованном в 1930 году. – Я не знаю, могу ли я охарактеризовать себя как пантеист. Эта проблема слишком сложна для нашего ограниченного ума».
В этом интервью Эйнштейна спросили, считает ли он себя пантеистом. Остальную часть его ответа стоит процитировать полностью:
«Могу ли я не отвечать притчей? Человеческий разум, независимо от того, как хорошо он обучен, не может понять Вселенную. Мы подобны маленькому ребёнку, зашедшему в огромную библиотеку, стены которой забиты книгами на разных языках до потолка. Ребёнок понимает, что кто-то должен был написать эти книги. Но он не знает, кто и как их написал. Он не понимает языков, на которых написаны книги. Ребёнок замечает определённый порядок этих книг, порядок, который он не понимает, но смутно представляет. Это, как мне кажется, отражает отношение человеческого разума, даже наилучшего и самого культурного, к Богу. Мы видим, что Вселенная устроена удивительно, подчиняется определённым законам, но мы понимаем эти законы лишь смутно. Наш ограниченный разум не способен постичь загадочную силу, которая качает созвездия. Я очарован пантеизмом Спинозы. Я ещё больше восхищаюсь его вкладом в современную мысль. Спиноза — величайший из современных философов, потому что он первый философ, который относится к душе и телу как к одному целому, а не как к двум разным вещам».
Бенедикт Спиноза, еврейско-голландский философ 17-го века, также был в свое время принят за атеиста за свою фразу из трактата «Этика»:
«Все вещи составляют необходимое следствие данной природы Бога и определены к существованию и действию по известному образу из необходимости Божественной природы».
В 1929 году Эйнштейн ответил на телеграмму Герберта С. Гольдштейна (раввина из Нью-Йорка), в которой тот хотел узнать об отношении Эйнштейна к религии. Гольдштейн ссылался на высказывание Бостонского кардинала о том, что релятивистские взгляды физика – это «чистой воды атеизм». Эйнштейн ответил Гольдштейну так: “Я верю в Бога Спинозы, который проявляет себя в закономерной гармонии бытия, но вовсе не в Бога, который хлопочет о судьбах и делах людей”.
Согласно выводам исследования 2006 года, для Эйнштейна это означало «космическое религиозное чувство», которое не подразумевает существование «антропоморфной концепции Бога».
Более полно эта мысль раскрывается в его интервью журналу New York Times:
«Религиозные гении всех времен были отмечены этим религиозным чувством, не ведающим ни догм, ни бога, сотворенного по образу и подобию человека. Поэтому не может быть церкви, чье основное учение строилось бы на космическом религиозном чувстве. Отсюда следует, что во все времена именно среди еретиков находились люди, в весьма значительной степени подверженные этому чувству, которые современникам часто казались атеистами, а иногда и святыми. С этой точки зрения люди, подобные Демокриту, Франциску Ассизскому и Спинозе, имеют много общего».
Таким образом, как сказал бы Эйнштейн, нет необходимости в конфликте науки и религии, или конфликте между наукой и «религиозными чувствами».
Статья впервые была опубликована на английском языке под заголовком «How Einstein Reconciled Religion to Science» в журнале «Nautilus» 30 ноября 2018 г.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
«Бог не играет в кости» и Принцип неопределённости Гейзенберга
Человек пытается объяснить всё, что происходит вокруг нас, с логической, научной точки зрения. Разумеется, что даже в XXI веке до сих пор есть вера в приметы и суеверия, во что-то потустороннее, но ведь, если не изучать науку, то мир будет казаться полным чудес, верно?
Вдохновившись научными теориями, а особенно, ньютоновской теорией тяготения, французский учёный Пьер Лаплас в начале XIX века подумал, что с помощью научных законов можно описать всё, что происходит вокруг нас, а значит, даже предсказать, как поведёт себя тот или иной объект в будущем. Например, мы можем рассчитать положение Солнца и планет, движение комет и метеоритов, мы знаем, когда будут лунные и солнечные затмения, грозят ли Земле столкновения с «непрошенными гостями», или же они в очередной раз пронесутся мимо. Лаплас полагал, что если можно рассчитать какие-либо события, то, значит, можно создать такую теорию, которая описывала бы всё, даже поведение человека можно было бы предсказать наперёд! Эти мысли совершенно не понравились тогда религиозным людям, ведь такой вселенский научный детерминизм полностью исключает возможность Бога вмешиваться в происходящее, а как же можно ограничить свободу Бога?
Во всём есть определённый порядок, но вот только с помощью каких именно правил мы могли бы описать весь мир? Всё большое начинается с малого подобно тому, как дом строится «по кирпичикам». Многие учёные предполагали, что прежде, чем пытаться разобраться с тем, что происходит во Вселенной, нужно понять, как ведут себя фундаментальные её составляющие – частицы, ведь возможно ответ к великой тайне будет начинаться именно с них.
Немецкий учёный Макс Планк в 1900 году, изучая различные виды излучений, подумал, что раз всё подчиняется определённым законам, значит не может быть никакого хаоса. Так он выдвинул гипотезу, согласно которой свет, рентгеновские лучи и другие волны не могут сами по себе испускаться с произвольной интенсивностью, а должны испускаться только некими порциями, которые Планк назвал квантами. Каждый квант излучения несёт определённое количество энергии. Чем больше этой энергии, тем выше частота волн.
Частицы в любой момент времени существуют в единственном месте пространства. Например, это точно так же, как человек, который сидит только в одной комнате и не может находиться больше ни в каких других помещениях.
Волны – это возмущения, распределённые в пространстве, как рябь, покрывающая поверхность водоёма. Мы можем чётко определить свойства волны как целого. Самое важное её свойство – длина – это расстояние между двумя соседними верхушками гребней (максимумами) или низинами (минимумами).
Но волну к одной точке не привяжешь. Она может быть во множестве мест. Представьте бумажный кораблик, плывущий по морским волнам: кораблик – это точка, он может оказаться то на гребне волны, то в самом низу, то где-то в промежутке.
Для квантовой физики понятие длины волны очень важно, ведь оно связано с понятием импульса.
Импульс – это произведение массы и скорости.
Планк был прав: быстро движущийся объект обладает большим импульсом, который означает очень малую длину волны. Тяжёлый объект тоже обладает большим импульсом, даже если он движется медленно, а раз он движется медленно, значит длина волны мала – именно поэтому мы не замечаем волновой природы повседневных вещей. Нам кажется, что волн нет, а они – есть!
Если у нас есть волна, мы можем измерить её длину, и, следовательно, её импульс. Но волна не имеет точного положения. У частиц наоборот: точное положение есть, а длины волны – нет, и импульс её тоже не определишь. Чтобы ответить на все эти вопросы, нужно объединить обе картины: создать график с волнами, только в небольшой области. Но вот в таком случае волны будут объединяться с разными длинами – так наш квант получит множество вероятностей обладания разными импульсами. В каком положении он окажется? Чем точнее мы будем пытаться измерить положение, тем короче должна быть длина волны, а если длина волны короче, то и энергии будет больше. Чем точнее пытаться измерить положение частицы, тем менее точными будут измерения ее скорости, и наоборот. Таким образом, Принцип неопределённости показывает, что невозможно вычислить всё и сразу, как бы мы ни старались.
Спор Альберта и Нильса
После знаменитой Копенгагенской интерпретации квантовой механики в 1927 году, Альберт Эйнштейн встал в оппозиция складывающемуся новому взгляду на природу. Уже на самой конференции Эйнштейн вместе со своими товарищами в мысленном эксперименте (Эйнштейна-Подольского-Розена парадокс) попытались показать неполноту квантовой физики. Убежденность Эйнштейна носила и явный эмоциональный характер, говоря: “Думать так логически допустимо, но это настолько противоречит моему научному инстинкту, что я не могу отказаться от поисков более полной концепции”. В этом споре главным оппонентом Эйнштейна стал Нильс Бор, который вместе с Вернером Гейзенбергом и разработал Копенгагенскую интерпретацию, выразившуюся в двух принципах: принципе дополнительности Бора и принципе неопределенности Гейзенберга. В одном из писем Бору, Эйнштейн писал: “Я убеждён, что Бог не бросает кости”, на что Бор парировал: “Эйнштейн, не указывайте Богу, что делать”. В беседе с Абрахамом Пайсом, другим сторонником квантовой механики Эйнштейн позволил себе и такую реплику: “Вы и вправду думаете, что Луна существует лишь когда вы на неё смотрите?”.
Упорные арьергардные бои, которые Эйнштейн вел против наступающей со всех сторон квантовой механики, достигли наибольшего напряжения в Брюсселе, во время двух знаменитых Сольвеевских конгрессов. В обоих случаях Эйнштейн выступал как провокатор, пытаясь нащупать брешь в торжествующей победу новой премудрости.
На первом из них, состоявшемся в октябре 1927 года, присутствовали три великих мастера, стоявших у истоков новой эры в физике, но теперь скептически настроенных по отношению к ее детищу – таинственному миру квантовой механики. Там были семидесятичетырехлетний Хендрик Лоренц, шестидесятидевятилетний Макс Планк и сорокавосьмилетний Альберт Эйнштейн. Хендрику Лоренцу, получившему Нобелевскую премию за исследования электромагнитного излучения, оставалось жить всего несколько месяцев. Макс Планк был обладателем Нобелевской премии за теорию кванта, а Эйнштейн – за открытие закона фотоэлектрического эффекта.
Среди остальных двадцати шести участников конгресса больше половины тоже в свое время стали лауреатами Нобелевской премии. Здесь же были и все чудо-мальчики новой квантовой механики, надевшиеся либо переубедить, либо победить Эйнштейна. Это были двадцатипятилетний Вернер Гейзенберг, двадцатипятилетний Поль Дирак, двадцатисемилетний Вольфганг Паули, тридцатипятилетний Луи де Бройль и представитель Америки тридцатипятилетний Артур Комптон. Был и представитель среднего поколения сорокалетний Эрвин Шредингер, зажатый между “сердитыми молодыми людьми” и стариками-скептиками. И конечно, здесь был сорокадвухлетний Нильс Бор, в прошлом “сердитый молодой человек”, который своей моделью атома способствовавший появлению квантовой механики, а теперь стойкий защитник вступающих в противоречие с интуицией следствий из этой теории.
Сольвеевский конгресс 1927 года
Сольвеевский конгресс 1927 года
Лоренц попросил Эйнштейна сделать на конгрессе доклад о состоянии дел в квантовой механике. Эйнштейн сначала дал согласие, но потом отказался. “После длительных колебаний я пришел к выводу, что недостаточно подхожу для того, чтобы представить доклад, отражающий текущее положение дел, – ответил он. – Отчасти это связано с тем, что я не одобряю чисто статистический способ рассуждений, на котором основываются новые теории”. А затем он с горечью добавил: “Прошу вас, не сердитесь на меня”.
Вместо него доклад, открывший конгресс, сделал Бор. Он не скупился на похвалу, описывая достижения квантовой механики. В субатомном мире нет определенности и строго выполняющегося принципа причинности, говорил он. Нет детерминистских законов, только вероятности и шанс. Не имеет смысла говорить о “реальности”, не зависящей от процесса наблюдения и измерения. В зависимости от характера ставящегося эксперимента свет может быть либо волнами, либо частицами.
Во время официальных заседаний Эйнштейн говорил очень мало. “Я должен извиниться, что не разобрался в квантовой механике достаточно глубоко”, – заметил он в самом начале. Но за обедом и во время долгих вечерних разговоров, возобновлявшихся за завтраком, он втягивал Бора и его сторонников в оживленные споры, затравкой для которых служила его любимая шутка о Боге, который не играет в кости. “Нельзя строить теории на основании большого числа всяческих “если”, – вспоминает Паули доводы Эйнштейна. – Это глубоко неправильно, даже если основывается на опыте и логически непротиворечиво”.
“Вскоре дискуссия свелась к поединку между Эйнштейном и Бором, споривших о том, можно ли атомную теорию в ее нынешнем виде считать окончательной”, – вспоминал Гейзенберг. Как сказал впоследствии Эренфест своим студентам, “о, это было восхитительно”.
Смеющийся Нильс Бор и рассуждающий Альберт Эйнштейн
Смеющийся Нильс Бор и рассуждающий Альберт Эйнштейн
И во время заседаний, и в пылу неформальных дискуссий Эйнштейн пытался обработать своих противников, ставя искусные мысленные эксперименты, которые должны были доказать, что квантовая механика не дает полного описания реальности. С помощью хитроумного воображаемого устройства он пытался показать, что все характеристики движущейся частицы могут, по крайней мере в принципе, быть точно измерены.
Например, один из мысленных экспериментов Эйнштейна состоял в следующем. Пучок электронов пускают на экран со щелью. Пройдя через щель, электроны ударяются о фотографическую пластину, и их координаты фиксируются. Было еще много дополнительных элементов воображаемого прибора, таких, например, как задвижка, которая позволяла мгновенно открывать и закрывать щель. Все они были изобретательно использованы Эйнштейном, который хотел продемонстрировать, что теоретически можно одновременно знать точно координату и импульс электрона.
“Эйнштейн являлся на завтрак с каким-нибудь подобным предложением”, – вспоминал Гейзенберг. Происки Эйнштейна его, как и Паули, волновали не слишком. “Все будет в порядке, – твердили они, – все будет в порядке”. Но Бор часто приходил в возбуждение и начинал что-то исступленно бормотать.
Обычно в зал, где проходило заседание конгресса, они шли вместе, разрабатывая по пути стратегию, с помощью которой можно было бы показать несостоятельность идей Эйнштейна. “К обеду мы обычно уже могли доказать, что его мысленный эксперимент не противоречит принципу неопределенности, – вспоминал Гейзенберг, – и Эйнштейн признавал поражение. Но на следующее утро он появлялся за завтраком с новым, обычно более сложным мысленным экспериментом”. К обеду они уже знали, как опровергнуть и его.
Вернер Гейзенберг и Нильс Бор
Вернер Гейзенберг и Нильс Бор за «чашечкой» Карлсберг
Так это и продолжалось. Бору удалось отбить каждый мяч, посланный Эйнштейном, и показать, как принцип неопределенности в каждый момент времени действительно ограничивает доступную нам информацию о движущемся электроне. “Так продолжалось несколько дней, – рассказывает Гейзенберг. – И под конец мы – Бор, Паули и я – знали, что у нас под ногами твердая почва”.
“Эйнштейн, мне стыдно за вас”, – ворчал Эренфест. Он был огорчен из-за того, что в отношении квантовой механики Эйнштейн проявляет ту же неуступчивость, что когда-то физики-охранители в отношении теории относительности. “К Бору он сейчас относится точно так же, как воинствующие защитники одновременности относились к нему самому”.
Замечание, сделанное Эйнштейном в последний день конгресса, показывает, что принцип неопределенности был не единственным заботящим его аспектом квантовой механики. Его также волновало – и чем дальше, тем больше, – что квантовая механика, возможно, допускает действие на расстоянии. Другими словами, согласно копенгагенской интерпретации, нечто происшедшее с одним телом мгновенно определяет результат измерения свойств другого тела, расположенного в совершенно другом месте. Согласно теории относительности, пространственно разделенные частицы независимы. Если действие, произведенное над одним телом, немедленно влияет на другое тело, расположенное в отдалении от него, отметил Эйнштейн, “с моей точки зрения, это противоречит постулату теории относительности”. Никакая сила, включая гравитационную, не может передаваться со скоростью, превышающей скорость света, настаивал он.
Может, Эйнштейн и проиграл спор, но он, как и прежде, оставался звездой конгресса. Де Бройль, мечтавший о встрече с ним, увидел Эйнштейна первый раз и не был разочарован. “Меня особенно поразило спокойное, задумчивое выражение его лица, общая доброжелательность, простота и дружелюбие”, – вспоминал он.
Этим двоим поладить было легко, поскольку де Бройль, как и Эйнштейн, пытался понять, можно ли как-то спасти причинность и достоверность классической физики. В то время он работал над так называемой теорией двойного решения, которая, как он надеялся, позволит обосновать волновую механику с точки зрения классической физики.
“Школа индетерминистов, главные адепты которой были молоды и бескомпромиссны, встретила мою теорию с холодным неодобрением”, – вспоминал де Бройль. Эйнштейн же, наоборот, одобрительно отнесся к его усилиям. Возвращаясь в Берлин, до Парижа Эйнштейн ехал одним поездом с де Бройлем.
Прощальный разговор состоялся на платформе Северного вокзала. Эйнштейн сказал де Бройлю, что все научные теории, если оставить в стороне их математическое выражение, должны допускать такое простое изложение, “чтобы даже ребенок мог их понять”. А что может быть столь же непросто, продолжал Эйнштейн, как чисто статистическая интерпретация волновой механики! “Продолжайте, – напутствовал он де Бройля, расставаясь на станции. – Вы на правильном пути!”
Действительно, Эйнштейн оставался упрямой белой вороной. “Я восхищен достижениями нового поколения молодых физиков, известными как квантовая механика, и я верю, что во многом эта теория истинна, – сказал он в 1929 году, когда сам Планк вручал ему медаль своего имени. – Но (это “но” всегда присутствовало, когда Эйнштейн выступал в поддержку квантовой механики) я верю, что ограничения, накладываемые статистическими законами, будут сняты”.
Макс Планк вручает медаль своего имени Альберту Эйнштейну
Макс Планк вручает медаль своего имени Альберту Эйнштейну
Так была подготовлена сцена для еще более драматического, решающего сольвеевского поединка между Эйнштейном и Бором. Он состоялся на конгрессе, проходившем в октябре 1930 года. В теоретической физике столь увлекательные сражения случаются редко.
В этот раз, пытаясь поставить в тупик группу Бора – Гейзенберга и сохранить достоверность механики, Эйнштейн придумал еще более изощренный мысленный эксперимент. Как уже упоминалось, принцип неопределенности утверждает, что существует компромисс между возможностью точного измерения координаты частицы и точного измерения ее импульса. Кроме того, согласно тому же принципу неопределенность свойственна и процессу одновременного измерения энергии системы и времени, в течение которого происходит исследуемый процесс.
В мысленный эксперимент Эйнштейна входил ящик с излучением, снабженный затвором. Затвор открывается и закрывается так быстро, что за один цикл может вылететь только один фотон. Затвор контролируется точными часами. Ящик взвешивают и получают точное значение его веса. Затем в строго определенный момент времени затвор открывается, и вылетает один фотон. Ящик взвешивают снова. Связь между энергией и массой (помните, E = mc2) позволяет точно определить энергию. А зная показания часов, мы знаем точное время вылета фотона. Вот так-то!
Конечно, на самом деле есть ограничения, не позволяющие реально поставить такой эксперимент. Но теоретически он возможен и, следовательно, опровергает принцип неопределенности.
Ящик с затвором из мысленного эксперимента Альберта Эйнштейна
Брошенный вызов потряс Бора. “Он метался от одного к другому, пытаясь уговорить всех, что такого быть не может, что если Эйнштейн прав, значит, физике пришел конец, – записал один из участников конгресса. – Но опровержения он придумать не мог. Я никогда не забуду вид этих двух противников, выходящих из университетского клуба. Величественная фигура Эйнштейна, идущего спокойно, чуть улыбаясь иронически, и семенящего рядом с ним, ужасно огорченного Бора”.
Нильс Бор и Альберт Эйнштейн после знаменитого мыслительного эксперимента последнего
Нильс Бор и Альберт Эйнштейн после знаменитого мыслительного эксперимента последнего
По иронии судьбы в этом научном споре после бессонной ночи Бору удалось заманить Эйнштейна в расставленную им же самим ловушку. В этом мысленном эксперименте Эйнштейн не принял в расчет свое собственное величайшее открытие – теорию относительности. Согласно этой теории в сильном гравитационном поле часы идут медленнее, чем при более слабой гравитации. Эйнштейн об этом забыл, но Бор помнил. При испускании фотона масса ящика уменьшается. Ящик находится в гравитационном поле земли. Чтобы его можно было взвесить, ящик подвешен на пружинке со шкалой. После вылета фотона он несколько поднимается, и именно этот небольшой подъем обеспечивает неприкосновенность принципа неопределенности для энергии и времени.
“Главным здесь был учет связи между скоростью хода часов и их положением в гравитационном поле”, – вспоминал Бор. Отдавая должное Эйнштейну, он любезно помог ему выполнить вычисления, которые и принесли в этом раунде победу принципу неопределенности. Но окончательно переубедить Эйнштейна не удавалось никому и никогда. Даже год спустя он все еще продолжал перебирать различные варианты подобных мысленных экспериментов.
Кончилось все следующим: квантовая механика доказала, что как теория она вполне успешна, а Эйнштейн впоследствии пришел к тому, что можно назвать его собственным толкованием неопределенности. Он уже говорил о квантовой механике не как о неправильной теории, а только как о неполной. В 1931 году он номинировал Гейзенберга и Шредингера на Нобелевскую премию. (Гейзенберг был удостоен премии в 1932 году, а Шредингер – одновременно с Дираком – в 1933 году.) Предлагая их кандидатуры, Эйнштейн написал: “Я убежден, что эта теория, несомненно, содержит часть истины в последней инстанции”.
Эрвин Шредингер, король Швеции и Вернер Гейзинберг на вручении Нобелевской премии Шредингеру в 1933 году.
Эрвин Шредингер, король Швеции и Вернер Гейзинберг на вручении Нобелевской премии Шредингеру в 1933 году.
Часть истины в последней инстанции. Эйнштейн все еще полагал, что есть еще нечто за реальностью, определяемой копенгагенской интерпретацией квантовой механики.
Ее недостаток в том, что она “не претендует на описание физической реальности, а только на определение вероятности осуществления физической реальности, которую мы наблюдаем”. Так в том же году писал Эйнштейн в статье в честь Джеймса Клерка Максвелла, великого мастера столь любимого им теоретико-полевого подхода к физике. Он закончил ее, заявив во всеуслышание о своем кредо реалиста – откровенном отрицании утверждений Бора, что физика имеет отношение не к природе как таковой, а только к тому, “что мы можем сказать о природе”. Услышав такое Юм, Мах, да, возможно, и сам Эйнштейн, когда был моложе, подняли бы в удивлении брови. Но теперь он провозглашал: “Вера во внешний мир, не зависящий от воспринимающего его субъекта, является основой всех естественных наук”.
Карикатура на знаменитый афоризм Альберта Эйнштейна “Бог не играет в кости”: Бог, играющий в кости.
Карикатура на знаменитый афоризм Альберта Эйнштейна “Бог не играет в кости”: Бог, играющий в кости.
Этим парнем был.
Тайна снежинок (Veritasium)
Какие тайны скрывает процесс образования снежинок, обеспечивающий такое широкое разнообразие форм и сложность узора? Как выращивать снежинки в лабораторных условиях, влияя всего на два параметра: температуру и влажность, чтобы приблизиться к пониманию того, как работает формообразование кристаллов льда?
Почему гелий меняет наш голос, а также что такое инертные газы
На уроках химии мы слышали об инертных газах. Их еще называют благородными, такое красивое название было дано не с проста, ведь все инертные газы, а именно гелий, неон, аргон, криптон, ксенон, а также радиоактивные радон и оганесон обладают очень низкой химической активностью, их соединения с другими веществами существуют лишь в специальных, экстремальных условиях, а значит, эти газы не горят и не поддерживают горение, более того, не имея цвета, запаха и вкуса они не токсичны для человека, их вообще как будто нет, настоящее благородство!)
Но это не совсем так, инертные газы хоть и не отравляют человека, но наркотически действуют на него, однако это не относится к гелию и неону, поскольку их наркотический эффект проявляется при очень повышенном давлении, впрочем, поэтому наркоманы и не дышат шариками с гелием.
Интересным фактом является то, что инертные газы переходят в жидкое состояние при экстремально низких температурах, при этом почти сразу после переходя в твердое состояние. Таким образом разница между температурой кипения и плавления у веществ состовляющих инертные газы 2-5, максимум 10 градусов.
Вообще гелий удивителен. Во Вселенной он второй по распространенности после водорода, но на Земле существует в совсем малых количествах, однако не беспокойтесь, на надувание шариков всем хватит). Из за практически самого малого размера атомов гелия, они почти не сталкиваются друг с другом, когда гелий находится в газообразном состоянии, что делает гелий идеальным газом (идеальный газ это такая теоретическая модель, можете посмотреть о ней в Википедии подробнее).
Еще одна занимательная вещь, что гелий, как и все инертные газы светится при пропускании через него электрического тока. Причем при изменении давления внутри газа, можно менять его цвет. Это связанно с тем, что с увеличением давления, электроны начинают чаще сталкиваться с атомами гелия и общая энергия вещества увеличивается, приводя к изменению цвета. Так гелий может светиться желтым, розовым, оранжевым и зеленым цветами.
Но мы то все знает гелий как веселый газ, смешно изменяющий наш голос. Почему так происходит? Тут нужно разобраться, что вообще такое звук, издаваемый нами при выдохе.
По простому звук есть колебание молекул или других мельчайших частиц среды, улавливаемое нашим ухом. Такой средой является воздух. Когда мы издаем какие либо звуки, наши голосовые связки вибрируют, создавая колебания среды, то есть воздуха. Чем чаще колеблятся связки, тем выше высота звука. Если мы вдохнем вместо воздуха гелий, он станет средой для распространения звука. Но из за гораздо меньшей плотности гелия, он создает меньшее давление на голосовые связки, чем воздух, позволяя им вибрировать быстрее и издавать более тонкий звук.
Так, для понижения голоса можно вдохнуть плотный газ, например фторид серы, он в 5 раз тяжелее воздуха и сильно понижает частоту колебаний голосовых связок, позволяя Вам говорить как Халк:).
Наблюдателя убери
О современной физике в одном абзаце
Больше околонаучного на канале https://t.me/everScience
Отец и сын
В 1906 году Джозеф Джон Томсон получил Нобелевскую премию по физике за демонстрацию того, что электрон является элементарной частицей, а в 1937 году его сын Джордж Паджет Томсон получил Нобелевскую премию за то, что показал, что электрон может быть волной.
Больше околонаучного на канале https://t.me/everScience.
25 часов в сутки
О ЯДОВИТОЙ ЛАПШЕ НА УШИ
Пришла пора опубликовать здесь свою заметку, писанную в 2010 году или раньше. Потому что актуальности она не утратила.
Илья Ильф при полной поддержке Евгения Петрова не церемонился со скудоумными соотечественниками. Достаточно вспомнить Эллочку Щукину, которую он сравнивал по уровню развития с людоедами племени мумбо-юмбо, или её подругу Фиму Собак, знавшую богатое слово гомосексуализм. Была в записных книжках Ильфа и шутка про человека такого некультурного, что бактерия ему снилась в виде большой собаки.
Это я к тому, что на днях многочисленные интернет-леди сделали перепост одного и того же текста с проникновенным заголовком «Для всех, кто дорожит здоровьем близких. ».
Привожу его полностью, с авторской орфографией и пунктуацией.
1. Никакой пластиковой посуды в микроволновых печках.
2. Никаких пластиковых бутылок с водой в морозильных камерах.
3. Никаких пластиковых упаковок в микроволновых печах.
Эта информация была опубликована в газете, выпускаемой больницей им. Джона Хопкинса (Johns Hopkins Hospital), а также распространена Медицинским центром Walter Reed Army.
Диоксин вызывает раковые заболевания, особенно рак груди.
Диоксин является высоко ядовитым веществом для клеток человеческого организма.
Не замораживайте пластиковые бутылки с водой, так как это приводит к освобождению дииоксина, входящего в состав пластика.
Особое внимание следует уделить недопустимости использования пластиковой посуды для нагревания пищи в микроволновках. Особо это касается жирной пищи. Сочетание жира, высокой температуры и пластика вызывает освобождение диоксина и его проникновения в пищу, а, соответственно, в конечном счете, в клетки человеческого организма.
Вместо пластика, медики рекомендуют для подогрева пищи использовать стеклянную или керамическую посуду. Результат будет тот же, но без диоксина в пище!
Поэтому продукты быстрого приготовления, такие как растворимые супы, каши и т.д. вначале необходимо переложить из пластиковой упаковки в стеклянную посуду, а затем лишь ставить в микроволновку или любую другую печь.
Также недопустимо использование пластиковых крышек, покрытий во время приготовления пищи в микроволновой печи. Это также опасно, как и использовать пластиковую посуду. Высокая температура приводит к тому, что диоксин практически «растаивает и стекает» с такой крышки в пищу. Намного безопаснее использовать бумажные салфетки.
Конец пространной цитаты…
…которая представляет собой классический образец белиберды, рассчитанной на впечатлительного идиота – или идиотку, да простят меня дамы. Потому что образ диоксина, «освободившегося» из пищевой посуды благодаря «сочетанию жира, высокой температуры и пластика», или диоксина, который «растаивает и стекает» в пищу – это штука посильнее «Фауста» Гёте, как сказал бы один Отец Народов. И очень напоминает ту самую бактерию в виде большой собаки.
Фрэнк Заппа язвил: современная журналистика – это когда тот, кто не умеет писать, берёт интервью у того, кто не умеет говорить, для того, кто не умеет читать. Я бы добавил, что зачастую разговор идёт на тему, в которой ни бельмеса не смыслят все трое.
Пожалуй, в процитированной статейке верно лишь одно: диоксины (их много разных) действительно представляют смертельную опасность. Кроме рака, они вызывают многие болезни, а ядовиты примерно в тысячу раз сильнее, чем боевые отравляющие вещества.
Но вот незадача: в состав любого диоксина входит хлор. Которого нет и быть не может в полиэтилене, состоящем только из углерода с водородом – это проходят в средней школе.
Хлор есть в ПВХ – поливинилхлориде, из которого не посуду делают, а лепят, например, дешёвую напольную плитку. Если такую плитку сжигать (не нагревать в микроволновке, а именно сжигать!), в самом деле можно получить диоксин. И если отбеливать хлором целлюлозную пульпу – тоже. И если производить гербициды хлорфенольного ряда… Но какое, интересно, отношение это имеет к кулинарии?
Есть соблазн поглумиться над каждой строчкой безграмотных авторов, у которых одинаково плохо и с русским языком, и с физикой-химией. Им для начала не худо бы усвоить, что термическая деформация – это физический процесс, а горение – химический. При окислении появляются новые вещества, а при плавлении – нет.
Есть соблазн, и всё же я не стану тратить время. Ограничусь предложением «для всех, кто дорожит здоровьем близких»: если выуживаете в сети заметки на жизненно важную тему – не почтите за труд освежить в памяти школьную программу, наведите пару справок, ведь интернет как раз под рукой!
И не спешите верить всему, что публикуют доброхоты-двоечники. Особенно если они пугают вас подслушанным где-то непонятным словечком диоксин и ссылаются на американскую клинику имени Хопкинса. Очень может быть, что это как раз пациенты клиники резвятся в отсутствие санитаров.
Игральные кости с химическими элементами. Видимо, для азартных химиков. )))
Немецкий физик,создавший в 1908 г.счетчик Гейгера.
Движение и покой
Книги о мозге, сознании и эволюции человека. Часть 2
В сегодняшнем посте я продолжу рассказывать о своих любимых книгах о работе мозга и соответственно нашей психики.
Человеческий мозг представляет собой сложнейшее из известных «устройство». Для того, чтобы наша психика функционировала хорошо, требуется слаженная работа целой кучи нейронных сетей. Эрик Кандель, американский психиатр и нейробиолог, показывает нам, как «поломки» в определенных частях мозга или нервных путях приводят к депрессии, необъяснимым тревогам, шизофрении, биполярному расстройству и ПТСР, и почему эти знания важны для понимания здорового мозга. В книге рассказывается история про развитие психиатрии и неврологии, а так же про то, как в нашем мозге взаимодействуют сознательные и бессознательные процессы.
Книга о жизни людей с неврологическими проблемами. Как они выживают в непривычном мире, который создает поврежденный мозг? Это не совсем научно-популярная книга, в ней чувствуется желание автора поднять и философские вопросы, вопросы о том, что такое личность, и как следует относится к своей болезни.
Детерминизм
Книги о мозге, сознании и эволюции человека
В сегодняшнем посте я отойду от темы когнитивно-поведенческой терапии и хочу рассказать о своих любимых книгах о работе мозга и соответственно нашей психики.
Книга написана известным астрофизиком Карлом Саганом, автором научно-фантастического романа «Контакт». Рассматривается эволюционное развитие нервной системы.
Журналистка, пишущая о нейрофизиологии и нейропсихиатрии, рассказывает об устройстве нашей памяти, развитии нервной системы и основных принципах ее функционирования. Рассматриваются очень интересные и необычные опыты.
Доступный и понятный текст на сложную тему.
Книга ни сколько об устройстве мозга, сколько о попытках науки и философии разобраться с проблемой сознания. Рассматриваются философские идеи о взаимоотношениях между мозгом и сознанием, научные теории о принципах работы нервной системы. Автор максимально не предвзят и свое собственное мнение сообщает лишь в самом конце. Так же рассматриваются с научной точки зрения провокационные идеи и околомистические явления такие как сонный паралич, внетелесные переживания, трансовые состояния, околосмертный опыт.
Наши поступки и мораль рассматриваются с точки зрения нейробиологии, эндокринологии и психологии. Что произошло за секунду, минуту, день, месяц, тысячи лет до нашего поступка и сделало его именно таким? Самое материалистическое о человеке, что мне только попадалось. Для кого-то это может оказаться минусом или чем-то гнетущим, для меня это оказался огромный плюс. Объемный труд, требующий внимательного чтения, а иногда и гугления. В конце приведен список всех использующихся терминов.
Подобная литература вызывает двоякие чувства. С одной стороны немного не по себе, чувствуешь всего лишь себя сложным автоматом, функционирующим по законам природы. Но в то же время, понимаешь насколько безумно сложным является этот «автомат», насколько сложная логика в нем реализована, раз позволяет существовать всему спектру человеческих явлений, включая способность любить, испытывать муки совести и совершать подвиги.
Картинка взята с freepik.
И не поспоришь.Для тех, кто понял))
Правда ли, что знаменитый физик Нильс Бор был вратарём сборной Дании по футболу?
Сегодня, 21 июня, состоится футбольный матч в рамках Евро-2020 между Россией и Данией. Это решающая игра за выход из группы. Обсуждая перспективы предстоящего поединка, мы решили напомнить вам наш разбор, непосредственно связанный с историей датского футбола.
Многочисленные биографии и наборы интересных фактов о нобелевском лауреате по физике утверждают, что в молодости Бор защищал ворота сборной Дании по футболу и даже стал вице-чемпионом Олимпийских игр. Мы проверили, так ли это.
(Для ЛЛ: футболом он занимался, но за сборную не выступал)
Обычно в футбольном контексте Нильс Бор упоминается вместе со своим младшим братом Харальдом, впоследствии ставшим довольно крупным математиком. В частности, журнал «Вокруг света» приводит фотографию с подписью: «Финал футбольного турнира Олимпиады-1908: сборная Дании, в составе которой выступают будущий нобелевский лауреат Нильс Бор и его брат Харальд, уступит команде Великобритании и увезёт на родину серебряные медали». В ряде источников говорится о том, что Нильс поехал на турнир резервным вратарём. Также авторы книг любят сообщать, что в моменты затишья у собственных ворот молодой учёный решал на штангах математические задачи.
Во-первых, разберёмся с Олимпиадой-1908 в Лондоне. Согласно официальному отчёту о соревновании, в воротах сборной Дании в течение всего турнира, включая проигранный британцам финал, стоял Людвиг Дрешер. Имени Нильса Бора нет даже в числе запасных игроков. Примечательно, что в те годы медаль могли получить только спортсмены, выходившие на поле, поэтому роль резервного голкипера — если бы эта информация подтвердилась — не могла бы сделать старшего брата призёром Игр. А вот Харальд Бор принял участие во всех матчах олимпийского турнира и даже забил два гола. Надо сказать, что братья были весьма похожи внешне, поэтому неудивительно, что в комментариях ко многим фотографиям той сборной Дании в интернете Харальд ошибочно назван Нильсом.
Далее, имени Нильса Бора нет вообще в списке футболистов, когда-либо выступавших за сборную Дании. Датские СМИ периодически затрагивают эту тему из-за распространённости легенды. Последний громкий случай произошёл в Германии в начале нулевых, когда на телевикторине «Кто хочет стать миллионером» прозвучал вопрос «Какой лауреат Нобелевской премии по физике сыграл несколько матчей за футбольную сборную своей страны?». Участник не смог выбрать между Герцем, Кюри, Беккерелем и Бором и спасовал. Учитывая, что это был вопрос за €500 000, после выхода шоу случился большой скандал.
Но нельзя сказать, что Нильс Бор вообще не занимался футболом. Вместе с братом он выступал за университетскую команду «Академиск» из Копенгагена. Харальд в среде болельщиков был известен тем, что перед каждым матчем доставал из кармана белый платок, чтобы определить направление и скорость ветра. А вот Нильс за свою гораздо более скромную любительскую карьеру запомнился другим случаем.
Однажды в матче против немецкой команды «Текникум» из Матвайды (другие источники гласят, что это был датский «Фремад Амагер») он пропустил нелепый гол с дальнего расстояния, даже не заметив, как мяч влетел в сетку. Позднее вратарь-физик признался, что очень увлёкся решением математической задачи на стойке ворот. Так что эта часть популярной информации о датском учёном подтверждается. Но вот за сборную Дании он никогда не выступал.
Ещё нас можно читать в Телеграме, в Фейсбуке и в Вконтакте. Традиционно уточняю, что в сообществах отсутствуют спам, реклама и пропаганда чего-либо (за исключением здравого смысла), а в день публикуем не больше двух постов.
Новый выпуск аудиоверсии проверок уже на сайте Коммерсантъ.
Нильс Бор. Датский физик-теоретик, общественный деятель, один из создателей современной физики и просто остроумный человек!
Над дверью лаборатории великого Нильса Бора была прибита подкова. Кто-то из журналистов спросил его:
Многомировая интерпретация квантовой механики: как родилась одна из самых смелых идей
Идея параллельных вселенных будоражит человеческий ум. Но мало кто знает, что автором одной из самых популярных и распространенных идей о параллельных мирах был скромный и упрямый аспирант из Принстона.
Однажды вечером 1955 года в Принстоне за бокалом-другим хереса датский физик Оге Петерсен обсуждал с двумя своими аспирантами — Чарльзом Мизнером и Хью Эвереттом — тайны, лежащие в самом сердце квантовой механики. Петерсен защищал идеи своего наставника Нильса Бора, бывшего одним из авторов так называемой Копенгагенской интерпретации — стандартного способа понимания квантовой физики. Копенгагенская интерпретация утверждает, что квантовый мир полностью отделен от нашего ежедневного опыта.
Петерсен говорил, что квантовая физика применима только к реальности сверхмалых масштабов, где царят отдельные и очень странные субатомные частицы. Он отмечал, что эту область науки невозможно использовать для описания мира людей, стульев и других объектов, состоящих из триллионов и триллионов таких частиц: этот мир может быть описан только классической физикой Исаака Ньютона. Кроме того, Петерсен утверждал, что математика квантовой физики сама сводится к математике физики Ньютона, как только количество частиц возрастает и становится достаточно большим.
Однако Эверетт не стеснялся атаковать традиционную позицию, которую защищал Петерсен. Эверетт отметил, что квантовая физика, на самом деле, не переходит в классическую при большом количестве частиц. Согласно квантовой физике, даже объекты обычных размеров — вроде стульев — могут быть обнаружены в двух разных местах одновременно — принцип квантовой суперпозиции. Он также подчеркнул, что неверно обращаться к классической физике для спасения ситуации, так как квантовая физика должна быть более фундаментальной теорией, лежащей в основе классической физики.
Хью Эверетт, 1964 год / © Wikipedia
«Пришло время воспринимать [квантовую физику] как фундаментальную теорию, без какой-либо зависимости от классической физики», — написал он в письме Петерсену.
Для разрешения проблемы суперпозиции Эверетт предложил поистине радикальную концепцию, с первого взгляда больше подходящую научной фантастике: он сказал, что квантовая физика предполагает существование бесконечного числа почти идентичных параллельных вселенных, постоянно отделяющихся друг от друга при каждом проведении квантового эксперимента. Эта странная идея, которую Эверетт обнаружил в математике квантовой физики, со временем стала известна как многомировая интерпретация.
Многомировая интерпретация практически сразу натолкнулась на контрольно-пропускной пункт в лице куратора диссертации Эверетта — физика Джона Уилера. Он был не особо известен вне научных кругов, но знал всех важных людей в своей области. Он был протеже Бора, также был знаком с Альбертом Эйнштейном. За 15 лет до того, как в его дверях появился Эверетт, Уилер курировал кандидатскую диссертацию молодого Ричарда Фейнмана, а позже курировал диссертации десятков других известных физиков, среди которых был и Кип Торн, обладатель Нобелевской премии по физике 2018 года.
Странные идеи Эверетта изначально казались Уилеру увлекательными, так как он считал их полезными для применения квантовой теории при описании Вселенной. Однако Уилер был человеком политичным и знал о негодовании Бора по поводу его отхода от квантовой ортодоксальности, которую проповедовали в Копенгагене. Он сделал все настолько прямо, насколько возможно: Уилер отправился в Копенгаген, чтобы попытаться получить благословение Бора на работу Эверетта в качестве расширения официальной копенгагенского понимания природы квантовой теории.
Нильс Бор / © Firma Jacobsen/Herdis & Herm
Все прошло не очень хорошо. В своем письме Эверетту Уилер заявил, что разрешение критики Бора относительно идей первого «потребует много времени, множества тяжелых споров с таким практичным и упрямым человеком, как Бор, а также много писанины и переписываний». Уилер умолял Эверетта лично приехать в Копенгаген, чтобы «сразиться с величайшим бойцом», имея в виду Бора.
Эверетт не особенно был заинтересован в борьбе с чем-либо или переписывании чего-либо. Он был уверен в своих идеях, а интеллектуальные чары академической карьеры его несильно затрагивали. Он больше был заинтересован в деньгах и том, что с ними можно сделать: хорошая еда и напитки, материальная роскошь и женщины. Он хотел жить с шиком, а не отсиживаться в профессорском кабинете. К моменту получения письма Уилера Эверетт уже присмотрел себе работу, которая могла все это ему предоставить: он устроился исследователем в Пентагоне, где рассматривал последствия гипотетических ядерных ударов в разгар холодной войны.
По возвращении из Европы Уилер заставил Эверетта пересмотреть диссертацию и удалить почти все упоминания «разделяющихся миров». Как только это было сделано, Эверетт покинул Принстон и больше не вернулся в академические круги. В своей дальнейшей карьере, работая в Пентагоне, Эверетт рассмотрел наихудшие последствия ядерной войны и стал соавтором одного из самых ранних и влиятельных докладов на предмет выпадения радиоактивных осадков.
Джон Уилер в Принстонском университете, 1967 год / © The New York Times
Правда, в итоге он все-таки добрался до Копенгагена. В марте 1959 года он отправился в Данию и представил свои идеи Нильсу Бору, пока тот посещал Европу по другим делам. Как впоследствии написал Эверетт, встреча была «обречена с самого начала». Ни Бор, ни Эверетт не поколебались в своих взглядах.
«Взгляд Бора на квантовую механику в целом принимался по всему миру тысячами физиков, занимающихся ею каждый день, — говорил Мизнер, который тоже тогда находился в Копенгагене. — Ожидать, что в результате часовой беседы с парнем он полностью изменит свою точку зрения, было абсолютно нереалистично».
Работа Эверетта пропала с радаров. О ней вспомнили только в 70-х годах, но даже тогда она не стала особенно популярной. Эверетт в итоге один раз вклинился в академический спор по поводу его работы. Уилер и его коллега Брайс Девитт пригласили Эверетта рассказать о своей работе в Техасском университете в 1977 году. Среди молодых физиков из Остина был и Дэвид Дойч, впоследствии ставший верным защитником многомировой интерпретации.
Образование множественных миров, исходя из мысленного эксперимента «кот Шредингера» (слева); формирование многомировой реальности (справа) / © Quantum Bits
«Он был полон нервной энергии, очень напряженный и невероятно умный, — вспоминает Дойч. — Он был полон энтузиазма в отношении множественных вселенных и очень здраво, и тонко ее [многомировую интерпретацию] защищал».
Работа Девитта, Дойча и других сделала многомировую интерпретацию одной из наиболее популярных гипотез за последние несколько десятилетий. Однако Эверетт не смог увидеть, как его гипотеза достигла нынешнего статуса, став одним из наиболее заметных конкурентов Копенгагенской интерпретации. Он умер от обширного инфаркта в 1982 году, ему был 51 год. Его семья кремировала тело, а прах выбросили в мусор, в соответствии с его последней волей. Тем не менее аргументированность и смелость Эверетта продолжает жить в его теории, рожденной во время пьяной беседы более 60 лет назад, и все чаще становится предметом споров между физиками сегодня.
Старение и бессмертие: взгляд биолога
Данная заметка написана по просьбе комментатора.
Когда я обучался в магистратуре, нам читал лекции профессор Валерий Степанович Тырнов, исследователь старения. Натура увлечённая, он рассказывал немало удивительного. Например, о том, что обнаружил на сыре штамм плесени, способный расти при отрицательных температурах, который содержит в морозилке, несмотря на протест жены. Профессор надеялся принять с этим штаммом участие в экспериментах, изучающих возможности терраформирования Марса. Ещё он рассуждал о внедрении в геном человека генов, отвечающих за фотосинтез, с целью получения «зелёных человечков», питающихся солнечным светом. Когда я сдавал экзамен профессору, у него уже отказывало зрение. В следующем семестре Валерий Степанович умер. Он пытался успеть победить старение, но не успел. Рассуждая вслух, Валерий Степанович говорил, что первый заметный признак старения у человека проявляется очень рано, зачастую – в подростковом возрасте. Это – кариес постоянных зубов.
Говоря о старении и естественной смерти, мы имеем в виду, прежде всего, многоклеточных животных. Среди одноклеточных и растений явления старения и смерти весьма размыты. Да, согласно новым научным данным, существует т.н. клональное старение штаммов микроорганизмов: для одних существует ограниченное количество делений митозом (бесполое размножение), для других биологические часы обнуляются лишь в одной из разделившихся половинок. Это т.н. репликативное старение. Многие исследователи говорят о хронологическом старении самих клеток простейших организмов. Но это лишь с одной стороны. С другой стороны, теоретически бессмертны растения, размножающиеся вегетативно. Кто может сказать, сколько лет существует традесканция, высаженная в горшок черенком, отделённым от традесканции из другого дома, и та, в свою очередь, когда-то была черенком… Это всё один и тот же геном, один и тот же индивидуум, с генетической точки зрения. В центре пустыни Мохаве произрастает King Clone – клональная колония креозотового куста (Larrea tridentata), возраст которой оценивается в 11700 лет.
Наблюдения за гигантскими груперами (Epinephelus lanceolatus), длиной 2,5 м. и весом до 400 кг. (живут 100-120 лет) показали, что старые особи проигрывают конкуренцию молодым. Они менее поворотливы из-за огромных размеров, зачастую не имеют возможности спрятаться в пещеру. Но они не стареют. Они по-прежнему отлично видят малейшее шевеление усика креветки из-под дальнего камня. Они просто перерастают свою экологическую нишу.
Максимальная продолжительность жизни человека – 120 лет.
Теперь попробуем классифицировать современные теории старения. Во-первых, следует выделить 2 большие группы эволюционных теорий старения.
Весьма популярны ныне теории, связанные с т.н. лимитом (пределом) Хейфлика. Такова теломерная теория Оловникова. В соматических клетках с диплоидным набором хромосом размеры теломер (участков ДНК на концах хромосом) с каждым делением клетки сокращаются, по причине отсутствия фермента теломеразы в клетке. Когда теломеры станут достаточно коротки, ДНК-полимераза потеряет способность реплицировать концы молекулы ДНК. Включается процесс апоптоза – запрограммированного саморазрушения клетки. Так, предельное число делений для клеток человеческого организма – 52 деления.
Клетки, в которых функционирует теломераза – бессмертны. Таковыми являются половые и раковые клетки. Полагается, что теломераза исчезла в соматических клетках не случайно, а для подавления опухолеобразования.
Линия клеток HeLa из раковой опухоли шейки матки пациентки по имени Генриетта Лакс, умершей в 1951 г, считается бессмертной. В декабре 1960 года клетки HeLa первыми полетели в советском спутнике. В 1968 г. на борту советского космического аппарата «Зонд-5» они облетели вокруг Луны. Эти клетки эволюционировали за прошедшие годы. Иногда они способны заражать культуры других клеток. Лен Ван Вален описал эти клетки как новый вид организмов – Helacyton gartleri, впрочем, обычно биологи не относятся к последнему всерьёз.
Рассмотрим теперь теории, рассматривающие старение как следствие повреждения клеток. Это вторая группа теорий старения.
Действительно: в мире стареет всё. Изнашивается ботинок, точит вода камень, солнца превращаются в красные гиганты… Эта группа теорий старения рассматривает старение как результат отсутствия программы репарации и способна вызвать некоторый психологический дискомфорт. Ведь написать программу это совсем не то, что просто её удалить, не так ли?
Рассмотрим одну из таких теорий, т.н. теорию накопления мутаций. Согласно этой теории, предложенной Питером Медаваром в 1952 году, естественный отбор препятствует накоплению вредных мутаций, проявляющихся до возраста, достижение которого необходимо организму для реализации репродуктивных функций. Далее действие естественного отбора ослабевает, и накопившиеся вредные мутации, проявляющиеся после прохождения организмом репродуктивного цикла, обеспечивают феноменологию старения. Очевидно, что домовой мыши с быстрым метаболизмом, маленьким тельцем и быстрым репродуктивным циклом, долгая жизнь ни к чему, другое дело – огромный слон, которому необходимо выносить слонёнка. Не отвергая ценного наблюдения о существовании некоторой корреляции между длиной репродуктивного цикла и продолжительностью жизни, отметим, что на настоящий момент теория накопления мутаций остаётся гипотезой.
Гораздо ближе автору этих строк т.н. теория одноразовой сомы. Согласно этой теории, в процессе эволюции стоял вопрос об ограниченности ресурсов. Ресурсы могли быть потрачены на репарацию, а могли быть потрачены на другие функции. В итоге они были потрачены на репарацию (восстановление) ровно на столько, сколько необходимо для реализации репродуктивного цикла. Поскольку жизнь это эволюция нуклеиновых кислот… И природа любит оптимизацию: у полихет – множество параподий, у их потомков членистоногих число ног с повышением уровня организации сокращается. У речного рака 5 пар ходильных ног, у паука – 4, у насекомых – 3, а клопу водомерке для прыжков по воде достаточно 2 пары, 3-я пара передних лапок – специализирована. В целом, данный взгляд на эволюцию старения разделяется основной частью биологического сообщества.
Однако, эволюционные теории старения рассматривают этот процесс в самых общих чертах. Отдельной категорией следует отметить теории старения, рассматривающие конкретные механизмы старения. Одну такую теорию (связанную с пределом Хейфлика) мы уже рассмотрели. Другая подобная теория – свободнорадикальная теория старения. Она утверждает, что старение происходит из-за накопления в клетках повреждений, нанесённых свободными радикалами с течением времени. Свободными радикалами называются молекулы или атомы, содержащие один или несколько неспаренных электронов на внешнем электронном уровне. Очевидно, что в основе этой теории во многом лежит эмпирическое наблюдение: животные с интенсивным метаболизмом живут меньше, чем животные с медленным метаболизмом. Сравните землеройку и черепаху. Одна из модификаций свободнорадикальной теории – митохондриальная теория старения, отводящая ключевую роль в процессе таким органоидам клетки, как митохондрии. Вряд ли свободные радикалы являются единственной причиной старения, однако, не следует забывать, что данный подход предполагает возможность увеличения продолжительности жизни при соблюдении определённой диеты (низкокалорийной) и регулярных занятиях спортом.
Автор этих строк придерживается взгляда, что старение связано с множеством механизмов. По аналогии с ботинком: он стирается, и одновременно у него может отклеиваться подошва. Это т.н. системный подход к старению, разделяемый большинством биологов.
Человек мечтает о вечной молодости и бессмертии с тех пор, как осознал себя смертным. Николай Фёдоров, предтеча и вдохновитель Циолковского, мечтал о воскрешении в будущем всех, когда-либо живших, силами науки. Эта идея не так утопична, как может показаться на первый взгляд, если учесть, что человеческий разум трансформирует в природе всё, с чем не может смириться. Люди не могли смириться с тем, что не способны летать, и, в конце концов, создали летательные аппараты. Может ли человек смириться со смертью близких? Нет.
Однако, сейчас нас интересует лишь остановка старения: существует ли в природе радикальный механизм омоложения? Доктор биологических наук Николай Мушкамбаров считает, что таким механизмом является мейоз – процесс образования половых клеток, известный каждому из школьных учебников биологии.
И вот тут нам придётся вступить в область научной фантастики.
Механизм обнуления биологических часов существует, и этот механизм воспроизводится в процессе полового размножения. Однако, обновлённый организм отличается от исходных родительских, но главное – занимает отдельное, искривлённое по Вернадскому, пространство. Даже если мы говорим об эмбрионе в теле матери. Доктор Мушкамбаров рассуждает о возможности запустить необходимые для обновления процессы мейоза в соматических клетках, нужно только полностью определить гены, ответственные за разные аспекты мейоза. Конечно, Мушкамбаров, оговаривается, что пока речь идёт о фантастическом проекте.
Однажды я беседовал обо всём этом со специалистом по старению (на тот момент – кандидат наук, преподаватель МГУ). Он отвечал, что его мысли движутся в том же направлении.
Тут возникнет множество этических противоречий. Подобная власть над биологической природой означает утрату смысла не только для таких понятий как возраст, пол, раса, внешний облик (всё это окажется легко трансформируемым в течение жизни), но и для привычных нам всем свойств человеческого организма (вспомните зелёных человечков профессора Тырнова, или человека-амфибию Беляева). Да, это философия трансгуманизма. Не цифровой трансгуманизм (киборгизация или оцифровывание человека, что мне неприятно), но биологический. Однако, прежде чем пугаться, задумайтесь над тем, что трансгуманистические преобразования начинаются ещё тогда, когда первобытный человек впервые применил зубный протез. Вопрос лишь в мере…
Вдумайтесь, как мало живёт человек. Если вы увлекаетесь историей, палеонтологией, фантастикой, следите за политическими событиями, вам должно быть знакомо это чувство: вы никогда не узнаете, что будет через двести, тысячу лет… Не увидите смены формаций, не увидите новой, посткайнозойской эры… Не узнаете, есть ли жизнь в пределах иных звёздных систем. При том, что можете свободно перемещаться в воображении сквозь тысячелетия и эоны в прошлое. Доживём ли? Я считаю, что шанс дожить до ощутимого продления срока жизни у нас есть, а там глядишь, и. Конечно, увеличение численности населения предполагает освоение дальнего космоса.
Фридрих Энгельс полагал свободу осознанной необходимостью и говорил о скачке из царства необходимости в царство свободы. Именно о таком прыжке в царство биологической свободы, при условии познания биологических необходимостей, идёт речь. Ещё буддистские философы мечтали остановить колесо Сансары, бесконечный круговорот рождений, страданий и смертей. Жизнь в древней Индии была настолько тяжела, что эта остановка мнилась мрачным для современного человека способом: уходом в абсолютное небытиё. Когда я однажды впервые воспроизвёл биуретовую реакцию на белок в лаборатории, то вдруг осознал, что в этом и заключается конечный смысл науки биологии: остановить колесо, и каждая установленная учёными реакция, позволяющая идентифицировать те, или иные биологические молекулы, подобная этой, окрашивающей содержимое пробирки в лиловый цвет, каждая новая формула, приближает человечество к этому часу. Майский ветер с запахом пыльцы врывался в раскрытое окно, хотел бы я вновь пережить эту гамму чувств…
В заключение отмечу вот что. Рыночная экономика не заинтересована в индивидуальной эволюции и бессмертии каждого. Подобно тому, как биологическая эволюция заинтересована лишь в продлении рода, она заинтересована в умножении прибыли. Подумайте об этом.