Блок питания воздухом что это
Как заменить вентилятор в блоке питания
Содержание
Содержание
Иногда вентилятор на блоке питания, особенно если модель бюджетная, через несколько лет эксплуатации начинает трещать, делая использование ПК крайне некомфортным, или полностью выходит из строя, заклинивая и вызывая перегрев. Давайте разберемся, как правильно подобрать новый вентилятор для замены и как надежно его установить, владея минимальными техническими навыками.
Почему вентиляторы в блоке питания выходят из строя быстрее обычных
Вентиляторы в блоке питания ПК работают в гораздо более тяжелых условиях, чем обычные корпусные. Во-первых, на вентиляторах с подшипниками скольжения и гидродинамическими подшипниками, которые массово устанавливаются в блоки питания, крайне неблагоприятно сказывается горизонтальная установка. Смазка в подшипнике в таком положении постепенно вытекает через уплотнение вала, из-за чего втулки и вал быстро изнашиваются.
Во-вторых, высокая температура в блоке питания, которая может быть выше 70 градусов, тоже способствует разжижению, испарению и быстрому вытеканию смазки через уплотнение. Повышение температуры на 20 градусов уменьшает срок службы таких подшипников в три раза. В-третьих, быстрому износу способствуют повышенные обороты вентилятора, которыми производители компенсируют экономию на радиаторах охлаждения и качественных электронных компонентах в бюджетном блоке питания.
В результате вентилятор в бюджетном блоке питания через несколько лет работы начинает трещать и вибрировать из-за износа подшипника. Смазывание подшипника вентилятора помогает ненадолго, поскольку не устраняет причину шума. Не застрахованы от быстрого износа и подшипники качения, которые иногда имеют низкое качество сборки и начинают шуметь сразу — на совершенно новом устройстве.
Характеристики, специфика режимов работы и типы подключения вентиляторов в блоке питания
В современных блоках питания обычно используются вентиляторы размером 120 и 140 мм, а в бюджетных моделях низкой мощности — 80 мм. Нередко можно встретить и нестандартные размеры: 135 или 139 мм, что может стать проблемой при их замене. Узнать точный размер вентилятора можно из обзоров блока питания, а если найти подходящий не удастся, небольшую разницу можно компенсировать креплением через силиконовые гвозди.
Подключается вентилятор в блоке питания обычно двухпиновым коннектором, а учитывая, что такие вентиляторы найти в продаже практически невозможно, нам придется выбрать модель с трех- или четырехпиновым разъемом и заменить его на двухпиновый. При таком подключении управление вентилятором происходит с помощью регулировки напряжения, а обороты не считываются, так как зависимость оборотов от напряжения задана в контроллере вентилятора блока питания.
Бывают модели блоков питания, где управление производится с помощью технологии PWM и установлены особые фирменные разъемы. В самых бюджетных моделях провод вентилятора может быть припаян и вообще не иметь разъема.
Одной из самых важных характеристик вентилятора для нас будет количество его максимальных оборотов, ведь если мы заменим вентилятор на низкооборотный, контроллер вентилятора блока питания знать об этом не будет, и обороты заметно упадут, что вызовет перегрев устройства. А вентилятор с более высокими оборотами сделает блок питания шумнее, но учитывая, что он при этом станет холоднее, такой вариант вполне можно рассматривать как рабочий.
Не менее важно стартовое напряжение вентилятора — в блоках питания оно обычно низкое, 4,5-5В, чтобы позволить высокооборотистому вентилятору запуститься и работать на малых оборотах. Если в блок питания поставить вентилятор с высоким стартовым напряжением, он попросту не запустится в режиме низкой нагрузки на устройство, вызвав перегрев, ведь обычные модели не рассчитаны на работу в пассивном режиме. Узнать стартовое напряжение можно в характеристиках вентилятора.
Самый распространенный вариант управления вентилятора в блоке питания — его зависимость от потребляемой устройством мощности. Растет потребление — растут и температуры внутри блока питания, требуя повышенных оборотов вентилятора. В более продвинутых моделях вентилятор реагирует и на рост температуры внутри устройства.
Узнать зависимость оборотов вентилятора от нагрузки на блок питания можно из обзоров. Обычно мы увидим график, где разработчики пытались создать акустический комфорт при небольшой нагрузке и плавный рост оборотов вентилятора при ее росте. Блоки питания с полупассивной системой охлаждения при небольшой нагрузке не запускают вентилятор, позволяя создать очень тихую систему.
Выбираем вентилятор для замены
Выбирая вентилятор для замены, нужно в первую очередь смотреть на модели с низким стартовым напряжением и обращать внимание на их максимальные обороты. Если они будут немного больше, чем у заменяемого вентилятора блока питания, то это даст более низкие температуры устройства, хотя и повысит уровень шума. А если вы уверены, что перегрева не будет, так как ваш блок питания загружен лишь частично, то можно установить и вентилятор с меньшими оборотами — это даст более низкий уровень шума.
Выбирать вариант с более высокими оборотами логично еще и потому, что в блоках питания обычно используются вентиляторы с высоким статическим давлением — они отличаются широкими массивными лопастями. А в продаже чаще встречаются вентиляторы с высоким воздушным потоком, но низким статическим давлением. Таким будет трудно продуть плотные внутренности блока питания, что можно компенсировать более высокими оборотами.
Стоит обратить внимание и на подшипник вентилятора, приобретаемого для замены. Лучше отдайте предпочтение моделям с гидродинамическим и шариковым подшипником, как самым долговечным. И последнее, что нужно учесть, это цена вентилятора — качественная модель может стоить дороже вашего БП, но ставить ее в бюджетный блок питания нецелесообразно.
По вышеописанным характеристикам нам отлично подойдут вентиляторы Arctic Cooling P12 PWM и P14 PWM: они обладают низким стартовым напряжением и довольно высокими максимальными оборотами в сочетании с демократичной ценой.
Как заменить вентилятор в блоке питания — практика
Для примера мы произведем замену вентилятора у блока питания Chieftec CFT-700-14CS. Вентилятор в этом блоке питания сначала трещал, а потом и вовсе перестал стартовать. Это старая модель и в сети даже нет ее обзора, но такой же вентилятор производства Yate Loon установлен в младшей модели — Chieftec CFT-600-14CS и имеет вот такую зависимость оборотов от мощности.
Первым делом нужно отвинтить болты, удерживающие крышку с вентилятором.
Аккуратно открываем крышку и находим разъем провода вентилятора, извлекаем разъем. На данной модели сделать это непросто, так как разъем имеет зубцы фиксации, извлечь разъем без повреждений поможет пинцет.
Теперь можно отвинтить вентилятор от крышки.
Если у вентилятора имеются упругие демпферы вибрации, запоминаем как они установлены и стараемся их не потерять.
На вентиляторе в большинстве случаев устанавливается пластина для правильного распределения воздушного потока, обычно ближе к задней стенке блока питания. Запомните ее расположение и отвинтите ее. На пластине видны следы перегрева из-за заклинившего вентилятора.
Разъем провода вентилятора крупным планом. Видно ПВХ-трубочку, защищающую провод от перегрева и оплавления, ее нужно будет поставить на провод нового вентилятора.
Отрезаем разъем с таким расчетом, чтобы у него осталось два-три сантиметра провода для удобной зачистки и последующей скрутки.
Подготавливаем новый вентилятор.
В зависимости от того, какой вентилятор вы будете использовать под замену — трех- или четырехпиновый (PWM), будет отличаться распиновка его контактов и цвет проводов. В обоих случаях нам будет нужен черный провод «-» и ближайший к нему провод «+» питания.
Отрезаем разъем на вентиляторе, нужные провода зачищаем, остальные оставляем в изоляции и заглушаем с помощью изоленты или термоусадочной трубки.
Соединяем провода скрутками. Токи в проводах вентилятора очень небольшие и можно смело использовать скрутку. Для надежности можно пропаять соединение, а все нужное для пайки можно приобрести в виде одного недорогого набора.
Надежно изолируем скрутки изолентой или, что надежнее и эстетичнее, термоусадочными трубками.
Прикручиваем вентилятор к крышке блока питания, прикручиваем к вентилятору пластину для направления воздушного потока, вставляем разъем вентилятора. Ставим крышку на место.
Прикручиваем крышку четырьмя болтами и наш блок питания готов к работе.
Подключив блок питания к ПК, убеждаемся, что вентилятор вращается и набирает обороты с ростом нагрузки.
Итоги
Как видите, заменить вентилятор в блоке питания не составляет труда при наличии минимальных технических навыков. Главной сложностью будет найти вентилятор, подходящий по оборотам и стартовому напряжению для вашего блока питания. Самое важное — соблюдать осторожность и быть внимательными при разборке и сборке устройства.
Если вы используете бюджетную модель, которой уже много лет, стоит подумать — есть ли смысл менять в ней вентилятор. Может, проще купить новый качественный блок питания с гарантией на три года.
Как работает полупассивная и пассивная система охлаждения в блоках питания компьютера
Содержание
Содержание
Система охлаждения в БП? Вы серьезно? Да еще и несколько типов? Да. В блоках питания тоже есть система охлаждения (СО), и есть несколько вариантов ее исполнения. Активная, полупассивная, пассивная — как они устроены, в чем разница и БП с какой системой охлаждения лучше?
Существуют три типа СО компьютерных блоков питания:
— активная. Вентилятор постоянно работает.
— полупассивная. Вентилятор не работает при небольших нагрузках.
— пассивная. Вентилятор отсутствует.
БП с полупассивной системой охлаждения
Большинство блоков, особенно бюджетного сегмента, имеют активную схему охлаждения. Такая система стояла в БП изначально. Первые блоки обходились без регулировки оборотов, вентилятор подключался непосредственно к линии питания 12 В. Иногда, если проектировщикам казалось, что вентилятор системы охлаждения заглушает шум двигателей взлетающих реактивных лайнеров, ставили последовательно мощный гасящий резистор.
Полупассивную СО чаще всего имеют блоки среднего и топового сегмента. Хотя сейчас появились модели с весьма демократичной ценой.
Эти БП схожи по конструкции с блоками с активной, но имеют более высокий КПД. Современные электронные компоненты и новые схемотехнические решения позволяют при небольших нагрузках работать блокам без принудительного обдува. Внешне они ничем не отличаются от БП с активной СО.
Современные БП имеют высокий КПД при небольших нагрузках. При нагрузке в 200 Вт рассеиваимая мощность составляет всего 17-25 Вт. С таким тепловыделением вполне можно справиться без обдува.
Управление включением вентилятора
Управление включением вентилятора в таких блоках обычно реализовано либо при превышении определенной мощности, либо от температуры.
Температурный датчик (чаще всего это термистор — полупроводниковый прибор, сопротивление которого зависит от температуры) устанавливается на радиатор выходных цепей, температура которых непосредственно зависит от выдаваемой в нагрузку мощности. Это самая простая схема реализации, управление вентилятором, которую можно выполнить из десятка недорогих деталей.
Запуск вентилятора при превышении определенной мощности чуть более сложен. Но тоже несложно реализуется при помощи шунта и компаратора.
В блоках питания с цифровым управлением, где уже имеется микропроцессор, часто делают оба вида, и от температуры и от мощности. (Возможностей любого современного микроконтроллера обычно более чем с запасом для управления БП, его подсветкой и прочим, так что не сложно реализовать и управление системой охлаждения).
При грамотном проектировании нет разницы, при выполнении какого условия запускается вентилятор, так что это выбор проектировщика, и пользователя это волновать не должно.
Достоинства БП с полупассивной СО
К тому же когда вентилятор работает — он засасывает пыль внутрь БП. А пыль, как мы знаем, вредна для электроники.
Хочется предупредить и о БП, которые номинально имеют полупассивную СО, но реально используются в активном режиме. Читайте обзоры или смотрите характеристики на сайте производителя. Обычно на графике оборотов вентилятора указывается момент начала его работы.
БП с пассивной системой охлаждения
Такие блоки проектируются изначально под пассивное охлаждение и имеют очень развитые радиаторы, собираются из высококлассных элементов по прогрессивной схемотехнике. Часто вместо радиатора используются панели корпуса, выполненные из толстых алюминиевых деталей сложной формы.
Ранее такие БП выпускались мощностью не более 400-450 Вт, но сейчас есть блоки мощностью 700 Вт, чего вполне хватит для весьма производительного копьютера. Такое стало возможно опять же благодаря прогрессу в электронике.
Рассмотрим, например, наиболее доступный Seasonic PRIME Fanless.
БП имеет сертификат 80 Plus Platinum, то есть его КПД при максимальной нагрузке не ниже 91 %. Корпус блока максимально перфорирован для лучшего охлаждения. Радиаторы имеют развитое оребрение и присутствуют даже на трансформаторе, чего в блоках с обычной СО обычно не делают.
Компоненты расположены внутри корпуса максимально свободно. Благодаря таким схемотехническим решениям и высокому КПД данный блок вполне справляется с полной нагрузкой без всякого обдува.
Цена на такие БП очень высока, и покупка подобной техники — удел пользователей, максимально ориентированных на полную бесшумность системного блока. Хотя сейчас и БП с вентиляторами чаще всего никаких неудобств в данном плане не доставляют.
Достоинства и недостатки
К достоинствам таких БП можно отнести:
Минусы таких блоков:
На момент написания статьи в каталоге товаров DNS в городе Новосибирске из 296 представленных моделей БП только один с пассивной СО, 271 с активной СО и 24 с полупассивной. Наличие товара определяет спрос.
Небольшой видеоролик по теме.
Установка блоков с полупассивной и пассивной СО в корпус
Идеальным корпусом для БП с полупассивной и пассивной СО является просторный кейс с нижним расположением блока и развитой вентиляцией.
Для блоков с пассивной СО чаще всего производитель сам пишет, как его ставить и куда. Это дорогой агрегат, и производитель подробно описывает установку и эксплуатацию — просто читайте внимательно инструкцию.
Блоки с полупассивной СО лучше ставить в просторный корпус внизу (у вас же денег хватило не только на видеокарту и процессор?). Вентилятором вверх.
К корпусам с кожухом внизу надо относиться осторожно. Даже при наличии отверстий в кожухе, они неизбежно ухудшают условия для охлаждения БП.
Этих отверстия иногда может не хватить для нормального охлаждения в безвентиляторном режиме.
А вот такой вариант вполне подойдет.
Но хотелось бы иметь отверстия еще и по бокам.
Идеальным для таких БП будет корпус «открытый стенд».
Большинство пользователей покупают блоки питания с активной системой охлаждения. Это не плохо. Чаще всего они не заметят никаких неудобств по сравнению с полупассивной.
БП с полупассивной СО — выбор пользователей, которые более тщательно относятся к выбору комплектующих. Такие блоки бесшумны на средней и малой нагрузке и чаще всего более аккуратно сделаны и прослужат дольше.
Болки с пассивной СО — вариант для энтузиастов, которые не пожалеют денег и личного времени для конфигурации ПК под свои, очень специфичные нужды.
9 мифов об охлаждении компьютера
Привет Пикабу! Не все помнят времена, когда процессоры и видеокарты требовали в худшем случае простого радиатора, а про корпусные вентиляторы и системы водяного охлаждения никто и не слышал. Но все изменилось: современные процессоры и видеокарты могут потреблять под нагрузкой сотни ватт, так что уже никого не удивишь трехсекционными СВО, килограммовыми суперкулерами и парой-тройкой корпусных вертушек. Однако с прогрессом в области охлаждения ПК также прогрессировали и мифы, и сегодня мы о них поговорим.
Миф №1. Чем производительнее охлаждение, тем ниже будет температура процессора.
Казалось бы, все верно: более крутое охлаждение способно отвести больше тепла от крышки процессора, значит его итоговая температура будет ниже. Однако тут ключевой момент — от крышки, а не от кристалла. А ведь между ними есть слой термоинтерфейса, да и зачастую сам кристалл достаточно толстый.
К чему это приводит? Да все к тому, что начиная с определенного тепловыделения процессора уже без разницы, чем вы его будете охлаждать: все упрется в временами не самый качественный термоинтерфейс под крышкой. За примерами ходить далеко не нужно: скальпирование Core i7-8700K и замена терможвачки под крышкой на жидкий металл снизит температуру под нагрузкой как минимум на десяток градусов. Более того — дополнительная шлифовка кристалла топового Core i9-9900K также способна убрать пару градусов.
В итоге для любого процессора есть разумное тепловыделение, и при его превышении какая бы ни была крутая система охлаждения, он все равно будет перегреваться. Поэтому нет смысла ставить к тому же Core i7-8700K трехсекционную систему водяного охлаждения, дабы он стабильно работал на 5 ГГц — вы добьетесь даже лучшего эффекта с простой «башенкой», если проскальпируете его.
Миф №2. Кулер нужно выбирать по TDP процессора
Многие производители кулеров и СВО пишут в характеристиках своего изделия, сколько ватт тепла оно может отвести. Аналогично, Intel и AMD пишут тепловыделение своих процессоров. Поэтому может показаться, что если вторая цифра меньше первой, то такое охлаждение вам подойдет.
Увы — тут есть сразу два заблуждения. Во-первых, реальное тепловыделение процессоров под нагрузкой и тем более разгоном зачастую куда выше, чем пишет производитель. Например, номинальный теплопакет Ryzen 9 3900X — 105 Вт, однако на деле он может потреблять почти в два раза больше, около 180-200 Вт. И если сотню ватт способны отвести даже не самые большие башни, то вот 200 Вт требует уже килограммовых суперкулеров или достаточно продвинутых СВО.
Intel тоже принимает в качестве значения TDP уровень энергопотребления при работе на базовой частоте.
Во вторых— далеко не всегда понятен смысл фразы «кулер может отвести Х ватт тепла». От какого процессора? Например, площадь крышки у 16-ядерного Threadripper почти вдвое больше, чем у 16-ядерного Ryzen, поэтому отводить тепло с нее проще. Плюс непонятно, с какой термопастой кулер сможет отвести указанное число ватт, и таких «но» можно назвать много. К слову, именно поэтому компания Noctua, не указывает, сколько ватт может отвести их решения.
Как же тогда узнать, подойдет вам определенный кулер или нет? Ответ прост — читайте его обзоры и смотрите, на каких тестовых системах его проверяют, после чего делайте логические выводы: к примеру, если кулер справился с Core i7-8700K, то и с более простым Core i5-8600K проблем не будет. И, с другой стороны, если с Ryzen 7 3800X у кулера проблемы, то брать его в пару к Ryzen 9 точно не стоит.
Миф №3. Для игровых ПК обязательно нужна СВО.
Как выглядит навороченный игровой компьютер? Правильно, масса вентиляторов с RGB подсветкой и обязательно система водяного охлаждения, куда же без нее. Однако на деле для подавляющего большинства ПК она просто не нужна.
Почему? Во-первых, игры грузят процессор куда слабее, чем стресс-тесты, и даже топовый Core i9-9900K, способный в тесте AIDA64 потреблять свыше 250 Вт, в играх и до сотни не дойдет, а с таким тепловыделением справится и не самая дорогая башня. Во-вторых, у СВО куда меньшая надежность, чем у кулеров: зачастую за пару лет помпы забиваются и начинают хуже работать и шуметь, а то и вовсе останавливаются. Причем их чистка, если она возможна, — далеко не самый простой процесс. Ну и в-третьих, у СВО плохая эффективность на ватт отводимого тепла: если за 4-5 тысяч рублей вы купите отличный суперкулер, который без проблем справится с топовыми 8-ядерными CPU, то среди СВО за такие деньги будут лишь достаточно бюджетные и не самые качественные модели.
Как итог — оставьте СВО для рабочих станций, где трудятся монструозные процессоры с парой-тройкой десятков ядер и тепловыделением под три сотни ватт. Собирая систему на домашних сокетах LGA1151 или AM4, переплачивать за водянку смысла нет.
Миф №4. Боксовые кулеры абсолютно не эффективны и их обязательно нужно менять.
В общем и целом, у большинства пользователей сложилось не самое лучшее впечатление о боксовых кулерах: дескать, они не эффективны и не справляются с процессорами, с которыми они идут в комплекте. Однако на деле это совсем не так.
Разумеется, небольшой алюминиевый радиатор с кусочком меди, не справится с Core i9 в разгоне. Но, к примеру, стоковый кулер вполне себе может удерживать температуры 6-ядерного Core i5-8400 в играх на уровне 60-75 градусов — и это при критичных температурах около сотни градусов. Еще лучше дела обстоят с боксовыми кулерами для Ryzen, которых существуют аж три версии.
Так, AMD Wraith Stealth, который поставляется с 4-ядерными Ryzen, вполне справляется с ними даже при небольшом разгоне процессора. А, например, AMD Wraith Prism, который поставляется вместе с Ryzen 7, вообще имеет 4 теплотрубки и показывает себя на уровне башенок за 1000-1500 рублей. Так что не стоит считать боксовые кулеры плохими — если вы не балуетесь разгоном и не нагружаете CPU чем-то сильнее игр, их возможностей вам вполне может хватить.
Миф №5. Жидкий металл всегда эффективнее термопасты
Жидкий металл отличается от термпопаст тем, что у него в разы выше коэффициент теплопроводности, из-за чего, в теории, температуры с ним должны быть ощутимо ниже. Однако на деле это далеко не всегда так. Например, если вы будете использовать вместо хорошей термопасты на крышке процессора жидкий металл, то вы снизите температуру… от силы на 2-3 градуса, а вот если под крышкой (то есть проведете скальпирование), то временами на 15-20 градусов.
Почему так? Все просто: площадь кристалла процессора на порядок меньше площади крышки, соответственно тепловой поток между крышкой и кристаллом оказывается огромным. Поэтому теплопроводности термопасты в этом случае не хватает, и выигрыш от перехода на жидкий металл становится ощутимым. А вот между крышкой процессора и подошвой кулера пятно контакта огромно, и тут уже хватает теплопроводности большинства термопаст, так что тратить жидкий металл тут не стоит.
Миф №6. Использование двух вентиляторов на одном радиаторе кулера существенно снизит температуру процессора.
В последнее время стали достаточно распространены процессорные кулеры с двумя и даже тремя вентиляторами, и, казалось бы, они должны эффективнее гонять воздух и тем самым лучше охлаждать ЦП. На деле все как обычно не так хорошо, как хотелось бы.
Почему? Да потому что воздух, прошедший через одну стойку радиатора, уже несколько нагрет, и второй радиатор будет по сути гнать через вторую стойку радиатора уже теплый воздух. Поэтому даже в случае с топовыми Noctua снижение температуры процессора от второго вентилятора составляет от силы 3-4 градуса, а уж в случае с китайскими «снеговиками» разница еще меньше. С учетом того, что шума такая система будет производить больше, смысла брать двух или трехвентиляторные кулеры немного.
Миф №7. Расположение в корпусе блока питания никак не влияет на температуру его компонентов.
Большинство относительно дорогих корпусов не просто так имеют место под блок питания в нижней части корпуса — в таком случае его вентилятор захватывает холодный наружный воздух. В более простых корпусах блок питания вынужден брать теплый воздух внутри корпуса, что разумеется негативно повлияет на температуры внутри него.
А с учетом того, что обычно в простых сборках используют вместе с не самыми дорогими корпусами и не самые лучшие блоки питания — не нужно мешать последним нормально работать, стоит доплатить буквально несколько сотен рублей и взять корпус нижним расположением БП.
Миф №8. SSD не требуют радиаторов.
Небольшие M.2 накопители становятся все популярнее: они зачастую в разы быстрее обычных SATA SSD, а вот цены на них постоянно снижаются. Однако стоит понимать, что высокие скорости просто так не даются: производители таких накопителей используют мощные многоядерные контроллеры, теплопакет которых составляет единицы ватт.
Как итог, при работе они могут достаточно существенно греться и достигать критических температур, после чего наступает троттлинг и снижение производительности — в общем, все как у обычных процессоров или видеокарт. Так что если вы купили себе дорогой и быстрый Samsung 960 EVO — докупите к нему радиатор на AliExrpess, если такового нет на материнской плате, это позволит ему работать быстрее при большой нагрузке.
Миф №9. Плохое охлаждение видеокарты никак нельзя исправить.
Мощные видеокарты всегда стоили дорого, а сейчас, с еще большим ослаблением рубля, цены точно не уменьшатся. Как итог, появляется желание сэкономить и взять видеокарту подешевле, и обычно в данном случае покупают референсные версии, которые максимально дешевые.
Однако зачастую быстро приходит понимание того факта, что охлаждение таких GPU или сильно шумит, или недостаточно эффективно и не позволяет толком разогнать видеокарту. Казалось бы, выхода тут нет: зачастую снизить шум можно только урезав видеокарте теплопакет, что снизит производительность, а для более-менее существенного разгона придется пускать вертушки на 100% оборотов, и играть в таком случае получится только в наушниках.
И не все знают, что выход из этой ситуации есть, и он достаточно прост — а именно можно отдельно купить кастомную систему охлаждения.
Она способная остудить даже горячую GTX 1080 Ti, причем стоит зачастую дешевле, чем разница между референсом и версией видеокарты от стороннего производителя с хорошим охлаждением.
Более того, в продаже встречаются и водоблоки для топовых RTX и AMD RX — такие решения не просто уберут все проблемы с нагревом, но и еще позволят неслабо разогнать видеокарту. В итоге, как видите, референская видеокарта — не приговор, ее почти всегда можно превратить в топовое решение за сравнительно небольшие деньги.
Как видите, мифов про охлаждение компонентов ПК хватает. Знаете какие-нибудь еще? Пишите об этом в комментариях.