Бисглицинат кальция что это такое
ТОП препаратов кальция
Кальций является одним из электролитов в организме. Это минерал, который несет электрический заряд при растворении в крови. Роль кальция в организме сложно переоценить, т. к. он является строительным материалом для костных структур, поддерживает здоровье клеточных мембран и принимает участие в передаче нервных импульсов. Также кальций обладает детоксикационным, противовоспалительным и противоаллергенным действием.
Лучшие препараты кальция представлены в рейтинге ниже. ТОП составлен в зависимости от эффективности и безопасности лекарственных средств, а также на основе отзывов. Не менее важный критерий – соответствие цена-качество. Самостоятельно подобрать лекарство непросто. Для начала следует проконсультироваться с врачом и при необходимости пройти обследование, чтобы уточнить диагноз.
Классификация препаратов кальция
Дефицит кальция часто развивается ползуче, а затем долго остается незамеченным. Это состояние может оказать негативное влияние на здоровье костей. Таким образом, увеличивается риск развития остеопороза и переломов костей.
Эксперты рекомендуют принимать добавки кальция только при доказанном дефиците данного минерала и витамина D или, а также при существующем остеопорозе. Главное – правильно подобрать препарат и дозировку.
Причины дефицита кальция в организме
Чтобы правильно выполнять свои разнообразные задачи, кальций должен присутствовать в организме в достаточном количестве. Но что такое достаточное количество? Суточные потребности разнятся в зависимости возрастных групп. В отличие от многих других питательных веществ, потребность в кальции не зависит от половой принадлежности. Мужчины и женщины нуждаются в минерале в одинаковой степени.
Таблица – Суточная потребность в кальции в зависимости от возраста
Органические соли кальция: перспективы использования в клинической практике
*Пятилетний импакт фактор РИНЦ за 2020 г.
Читайте в новом номере
Дефицит кальция является одним из самых распространенных и имеющих серьезные метаболические последствия нутриентных дефицитов. При этом начальные стадии его развития, как правило, диагностируются с опозданием, а мероприятия по коррекции дефицита кальция задерживаются на несколько лет. Ранние симптомы дефицита кальция включают онемение в пальцах рук и ног, судороги и подергивания в мышцах, раздражительность, нарушение когнитивных способностей. Оставаясь без компенсации в течение длительного времени, дефицит кальция приводит к обменным нарушениям, в том числе остеопении, остеопорозу, повышает риск переломов. Дефицит кальция также способствует ускорению развития атеросклероза [1].
Деформированная по минеральному составу диета, характеризующаяся дефицитом кальция, магния, калия, цинка, селена на фоне избыточного потребления натрия (поваренная соль), простых сахаров и насыщенных жиров, стимулирует развитие диабета, ожирения, остеопороза, сердечно–сосудистых, цереброваскулярных и онкологических заболеваний, в то время как данные экспериментальных и клинических исследований показывают, что восполнение дефицита кальция значительно снижает риск развития этих болезней.
Эффективность коррекции кальциевого дефицита зависит от множества дополнительных факторов, включая конкретную форму кальция, питьевой и двигательный режимы пациента, наличие вредных привычек. Поэтому грамотно проводимая компенсация дефицита специальными препаратами кальция в рамках комплексной программы профилактики/терапии является важным резервом улучшения здоровья населения.
Степень обеспеченности организма кальцием должна определяться с учетом следующих биомедицинских данных: опросников/дневников диеты, балльных шкал клинических признаков дефицита кальция, измерения уровня кальция в плазме крови, результатов денситометрических измерений. К сожалению, в клинической практике опросники и балльные шкалы используются весьма редко. Симптоматика дефицита кальция не вполне специфична и часто принимается за симптомы других заболеваний, в то время как именно опросники и тщательный анализ клинической симптоматики являются основополагающими для ранней диагностики дефицита кальция.
На практике гораздо чаще используются измерение уровней кальция в крови и денситометрия, указывающие на уже сформировавшийся и выраженный кальциевый дефицит. Примерно половина общего кальция плазмы крови циркулирует в несвязанной форме (так называемый «ионизированный кальций»), остальной кальций плазмы связан с альбумином и другими сывороточными белками. В норме уровень общего кальция составляет 2,2–2,6 ммоль/л, несвязанного (ионизированного) кальция – 1,1–1,4 ммоль/л. Биологический эффект кальция определяется количеством несвязанного кальция, а не общего кальция, поэтому гипокальциемия диагностируется именно при понижении уровней несвязанного кальция ниже нормы. Гипокальциемия может быть связана с нарушениями паращитовидной функции, недостатком витамина D в рационе питания, отсутствием достаточного ультрафиолетового облучения или нарушениями функции почек. Низкий уровень витамина D в организме может привести к отсутствию поглощения кальция и вторичному гиперпаратиреозу (гипокальциемия и повышенный уровень паратгормона) [2].
Физиологические эффекты воздействия гипокальциемии на организм человека обусловлены нарушениями фундаментальных кальций–зависимых процессов внутри клетки. Ион кальция (Са2+) играет ключевую роль в физиологии клетки и всего организма. Кальций в форме гидроксиапатита является основным строительным материалом кости. Существует более 2000 Са2+–зависимых ферментов (наиболее известный пример – ферменты гемостаза), активность которых в условиях дефицита кальция будет значительно снижена. В сложнейших каскадах внутриклеточной передачи сигналов кальций выступает важнейшей сигнальной молекулой (так называемым «вторичным мессенджером»). Внутри клеток имеются специальные компартменты – хранилища кальция, которые высвобождают его при передаче внутриклеточного сигнала, мышечном сокращении и других кальций–зависимых процессах. В состоянии покоя, при отсутствии сигнала внутриклеточная концентрация ионизированного кальция составляет
100 нм, а в процессе прохождения сигнала, сокращения мышечных волокон и т.д. увеличивается в 10–100 раз. Эти внутриклеточные хранилища кальция необходимы для осуществления процессов сокращения всех типов мышечных клеток, секреции нейромедиаторов, поддержания разности потенциалов на мембранах нейронов.
При дефиците кальция активность всех этих процессов будет нарушаться, что обусловливает необходимость восполнения депо кальция за счет продуктов питания и специальных кальциевых препаратов. Общеизвестно, что молочные продукты (молоко, сыр) – значительный источник кальция. Хорошими источниками кальция являются также морские водоросли (ламинария), миндаль, лесной орех, кунжут, фисташки, фасоль, инжир, бамия, брюква, брокколи [3].
Казалось бы, что компенсация недостаточности кальция наиболее просто и эффективно осуществляется именно за счет приема тех или иных видов пищи. Однако подобного рода убеждение не является научно обоснованным. Прежде всего следует отметить, что существуют установленные в результате многочисленных клинических и фармакокинетических исследований суточные потребности в эссенциальных микронутриентах. При поступлении кальция в организм в количестве ниже установленной суточной потребности (800–1500 мг кальция/сут.) рано или поздно возникнет дефицит кальция. Восполнение этой суточной потребности в кальции продуктами питания имеет ряд существенных особенностей, которые сторонниками догматов вроде «кальция хватает в обычной пище» полностью игнорируются, намеренно или нет.
Во–первых, один и тот же продукт (например, молоко) в зависимости от производителя может содержать количество кальция, различающееся в 1,5–2 раза, что не позволяет гарантировать, что при употреблении конкретного продукта пациент получит весь необходимый ему кальций.
Во–вторых, даже продукты–концентраторы кальция содержат миллиграммы данного макроэлемента, что делает необходимым потребление значительного количества этих продуктов ежедневно: например, в 100 г молока содержится в среднем 100 мг кальция, в 100 г творога – 95 мг, в 100 г сметаны – 90 мг. Поэтому для восполнения суточной потребности в кальции (скажем, 1000 мг/сут.) каждый день необходимо выпивать 1 л молока, съедать 1 кг творога или 1100 г сметаны. Далеко не каждый человек сможет иметь такой режим питания, даже при условии полного здоровья.
В–третьих, пищевые продукты содержат тысячи других веществ помимо эссенциальных нутриентов, и эти вещества могут оказывать различные, зачастую весьма нежелательные эффекты на организм. Например, в твердом швейцарском сыре может быть до 600 мг кальция на 100 г продукта, так что достаточно съедать 150 г сыра в сутки. Однако это количество твердого сыра содержит до 80 г насыщенных жиров, и такого рода «кальциевая» диета будет способствовать усиленному развитию атеросклероза. Некоторые люди имеют аллергию на молочные продукты, у многих наблюдается непереносимость лактозы, что не позволяет употреблять неферментированные молочные продукты в количествах, достаточных для обеспечения организма кальцием [4]. При употреблении растительной кальций–содержащей пищи всасывание кальция из желудочно–кишечного тракта (ЖКТ) может уменьшаться при одновременном приеме продуктов, содержащих щавелевую и фитиновую кислоты (например, шпинат или ревень) из–за образования нерастворимых кальций–оксалатных и кальций–фитатных комплексов.
Поэтому зачастую гораздо более практичным, безопасным и экономически более выгодным будет употребление специальных препаратов кальция с целью компенсации пищевого дефицита этого макроэлемента. Рекомендуемая суточная доза кальция составляет
1000 мг/сут. для взрослых, и такое количество вполне могут содержать 1–2 таблетки. Прием той или иной формы кальция часто сопровождается добавками витамина D3, потому что его активные формы включают экспрессию генов, кодирующих ответственные за усвоение кальция белки [5]. Прием препаратов кальция безопасен, ведь острое отравление им возможно только в том случае, когда соединения кальция вводятся внутривенно. Например, пероральная средняя летальная доза (LD50) в эксперименте составила 6,45 г/кг карбоната кальция [6] и 1,4 г/кг хлорида кальция [7] – это дозировки, превышающие суточную потребность в кальции в десятки раз.
Существенной проблемой компенсации диетарного дефицита кальция является выбор наиболее приемлемой фармакологической субстанции и фармацевтической формы кальция. Для принятия решения о выборе наиболее подходящего для конкретного пациента препарата кальция врачу необходима информация о фармакокинетике и фармакодинамике различных фармакологических субстанций кальция. В настоящей работе проанализирована доказательная база по использованию неорганических (карбонат, фосфат) и органических солей кальция (цитрат кальция, глюконат кальция, лактат кальция и др.); сформулированы современные принципы коррекции дефицита кальция.
Карбонат кальция является наиболее распространенной и одной из самых дешевых форм кальция. Он широко используется в медицине в качестве пищевой добавки кальция или антацида [8], содержит 40% элементарного кальция.
Наилучшее усвоение этой формы кальция происходит при совместном приеме с пищей, причем оно в значительной степени зависит от кислотности желудка (лучшее усвоение наблюдается при более низких рН [8]). Ведь карбонат кальция нерастворим в воде, и его усвоение в организме происходит исключительно за счет взаимодействия с хлороводородной кислотой желудочного сока:
CaCO3 + 2HCl > CaCl2 + CO2^+ H2O
При поступлении карбоната кальция внутрь в составе твердых лекарственных форм (таблетки, драже, капсулы), а также в форме порошков данная реакция, проходящая с образованием углекислого газа, происходит в желудке. При этом расходуется часть соляной кислоты желудочного сока, необходимого для переваривания пищи. При приеме карбоната кальция в количестве 1000 мг (типичная дозировка таблеток карбоната кальция) образуется углекислый газ в количестве 0,01 моль (что соответствует приблизительно 220 мл). Такой объем углекислого газа в желудке будет вызывать чувство распирания, желудочно–кишечный дискомфорт и отрыжку углекислым газом. При наличии в желудке эрозивных повреждений растягивание слизистой желудка вследствие накопления углекислого газа крайне нежелательно. При белковом питании упоминаемый выше антацидный эффект карбоната кальция приводит к задержке пищевого транзита в желудке.
У пациентов с нормальной и тем более с повышенной кислотностью желудочного сока карбонат кальция может способствовать восполнению дефицита кальция. Двойное слепое рандомизированное контролируемое исследование карбоната кальция в течение 24 мес. показало эффективность его использования для восполнения потребности в кальции у 257 здоровых подростков 12–15 лет. Участники были случайным образом распределены на 4 группы и получали жевательные таблетки карбоната кальция, обеспечивавшие их элементарным кальцием (63 мг/сут., 354 мг/сут., 660 мг/сут., 966 мг/сут.). Содержание минеральных веществ и минеральная плотность кости (МПК) всего тела и поясничного отдела позвоночника значительно увеличились при применении всех доз препарата (р Ca3(C6H5O7)2 + 3CO2^+ 3H2O
Эта химическая реакция хорошо известна из общей химии и обусловлена вытеснением более слабой угольной кислоты более сильной лимонной [21]. Вследствие того, что углекислый газ удаляется из раствора практически полностью, данная реакция протекает необратимо и весь карбонат кальция переходит в органический цитрат кальция.
Лимонная кислота входит в состав 1 таблетки препарата в количестве 1662 мг, что достаточно для полного растворения карбоната кальция: в соответствии с приведенным выше уравнением реакции, для растворения 875 мг карбоната кальция достаточно около 1200 мг лимонной кислоты в виде моногидрата. При растворении таблетки препарата Кальция Сандоз® Форте в воде в полученном растворе оказываются катионы кальция в окружении анионов органических кислот (лактата, глюконата и цитрата), которые стабилизируют ионы кальция в растворе и обеспечивают высокую биодоступность ионизированной формы кальция. Экспериментальные исследования показали сравнимую биоусвояемость этих солей кальция (табл. 1).
Свойства смеси солей в основе препарата Кальций Сандоз® Форте были изучены в экспериментальных и клинических исследованиях. При исследовании всасывания кальция из 4 различных добавок при прохождении через динамическую, управляемую компьютером модель ЖКТ, было установлено, что биодоступность (абсорбция, всасывание) кальция убывала в ряду Са лактат–глюконат > Са лактат > Са цитрат > Са карбонат. Для всех органических солей (лактат–глюконат, лактат, цитрат) биодоступность кальция была одинаковой вне зависимости от приема пищи. Биодоступность кальция из чистого карбоната кальция (т.е. без добавки лимонной кислоты) была значительно выше при потреблении с пищей и значительно ниже при запивании стаканом воды [23].
Всасывание кальция из 6 различных источников (молоко, карбонат, эквимолярная смесь цитрат/малат, фосфат, L–лактат и эквимолярная смесь лактат/глюконат) изучалось в группе, в которую входили 10 женщин в постменопаузе. Всасывание кальция определяли с помощью технологий стабильных изотопов (изотопная метка 44Са). Биоусвояемость (всасывание) кальция из указанных источников кальция во время завтрака колебалась от 25% для трикальций дифосфата до 32% для кальция лактат–глюконата. Без завтрака усвоение кальция было значительно выше (45%) [24].
Следует также рассмотреть устоявшийся стереотип о необходимости совместного приема витамина D и кальция. Часто в состав того или иного препарата кальция входят одновременно и кальций (как правило, карбонат кальция), и витамин D. Цель одновременного приема заключается в том, что витамин D стимулирует повышение экспрессии кальций–транспортирующих ионных каналов в различных типах клеток. Однако осуществление биологических эффектов витамина D, обычно использующегося в форме холекальциферола (витамин D3), занимает определенное время: он должен трансформироваться в активные формы в печени и почках, что занимает не менее 2–3 ч. Затем активные формы витамина D (25–гидроксивитамин D, 1,25–дигидроксивитамин D) должны транспортироваться к целевым клеткам и стимулировать процессы экспрессии кальциевых каналов. Данный процесс займет еще 1–2 ч. В то же время пик концентрации кальция в плазме крови при пероральном приеме достигается уже через 1–2 ч, после чего уровни кальция в плазме начинают падать.
Очевидно, что за 1–2 ч витамин D3 не успеет проявить свои биологические эффекты, способствующие усвоению кальция. Поэтому с точки зрения фармакокинетики представляется более рациональным не одновременный, а раздельный прием кальция и витамина D. Сначала принимается витамин D (причем желательно в активной форме), а через 3–4 ч – препарат кальция. При таком способе приема влияние витамина D на всасывание кальция будет максимальным. Иначе говоря, прием витамина D за несколько часов до приема препарата кальция как бы подготавливает клетки организма к более полноценному усвоению лактата, глюконата и цитрата кальция.
Заключение
Коррекция дефицита кальция может быть предпринята с использованием препаратов на основе различных солей кальция. Приводимые в настоящей статье данные фармакологии, экспериментальной и клинической медицины указывают на перспективность использования таких органических солей кальция, как лактат, глюконат и цитрат. Широко применяемый в настоящее время карбонат кальция, несмотря на свою дешевизну и относительную эффективность, противопоказан пациентам с пониженной кислотностью желудка, нежелателен на фоне приема эстрогенсодержащих препаратов и не является лучшим выбором при сопровождении беременности, особенно при недостаточном потреблении кальция из пищи.
Новое поколение препаратов железа – бисглицинат (хелат) железа
Распространенность анемии
Значимость анемии как проблемы современного мира не вызывает сомнений. Несмотря на все достижения цивилизации, дефицит железа является основным и наиболее распространенным нарушением питания в мире. Дефицит железа, от которого страдают многие дети и женщины в развивающихся странах, является единственным видом недостаточности питательных веществ, который также в значительных масштабах распространен в экономически развитых странах. Уровни его распространенности поражают: 2 миллиарда человек, то есть более 30% населения мира, страдают от анемии. 1
Среди анемий ведущими являются железодефицитные, составляя в структуре у женщин до 90% и среди мужчин — до 80%. Важным является высокая распространенность среди населения латентного дефицита железа, которая колеблется от 19,5% до 30%, кроме того, от 50% до 86% женщин имеют факторы риска развития анемии.
Железодефицитная анемия (ЖДА) — заболевание системы крови, обусловленное дефицитом железа в организме, сопровождаетcя изменениями параметров его метаболизма, уменьшением концентрации гемоглобина в эритроцитах, количественными и качественными их изменениями и клинически выражается анемической гипоксией и сидеропенией.
Сидеропения и развивающаяся в последующем тканевая и гемическая гипоксия приводят к расстройствам сердечно-сосудистой (миокардиодистрофия и нарушение кровообращения различной степени), нервной системы (вегетативно-сосудистые, вестибулярные нарушения, астенический синдром), снижению детородной функции женщин, а также развитие осложнений во время беременности и родов, изменению интеллекта и поведенческих настроений, хронизацию различных заболеваний и как следствие снижение работоспособности и ухудшение качества жизни. 4
Эволюция синтетических лекарственных средств терапии железодефицитной анемии
Фармакотерапия ЖДА базируется на введение в организм железа из состава железосодержащих лекарственных средств. Выбору препарата для коррекции сидеропении придается особое значение, так как важна не только эффективность, но и отсутствие побочных реакций и осложнений при их применении.
Существует условное деление препаратов железа на двух- и трёхвалентные. Однако, сама по себе валентность железа не представляет какой-либо ценности.
Известно, что всасывание железа в кишечнике возможно лишь тогда, когда микроэлемент находится в двухвалентной форме, которая способна проходить через клеточную мембрану слизистой оболочки кишечника. Низкое значение рН желудочного содержимого способствует растворению алиментарного железа и переходу трехвалентного железа (окисное) в двухвалентную форму (закисное). 17
При поступлении желудочного содержимого в кишечник рН пищевого комка повышается и в отличие от ферро-иона (Fe2+), ферри-ион (Fe3+) образует нерастворимые соли. В этих условиях только муцин, хелатируя железо, способен поддержать ферри-ион в растворимом состоянии. 4
Таким образом, соединения железа в составе препаратов должны обладать хорошей растворимостью, высокой биодоступностью, достаточным содержанием элементарного железа и малой токсичностью. Рассмотрим особенности абсорбции каждой из трёх известных групп препаратов железа.
Первое поколение препаратов железа
Одной из первых групп препаратов железа стали применять ионные соли двухвалентного железа. Эта группа характеризуется довольно быстрым наступлением эффекта в плане повышения гемоглобина и улучшения гемодинамических показателей в периферической крови.
Тем не менее, лечение ионными препаратами железа, в частности сульфатом железа, вызывает побочные реакции у 44,7% пациентов. Чаще всего страдает желудочно-кишечный тракт (ЖКТ). Симптомы дисфункции его верхних отделов обычно проявляются в течение часа после приема лекарства и могут протекать как в легкой (тошнота, дискомфорт в эпигастрии), так и в тяжелой форме — с болью в животе и/ или рвотой. Кроме того, ферротерапия солевыми препаратами железа нередко сопровождается появлением металлического привкуса в течение первых дней лечения, потемнением зубной эмали и десен, возможны также диарея или запор. хорошо известно, что солевые препараты железа в просвете кишечника взаимодействуют с компонентами пищи, лекарствами, затрудняя абсорбцию в том числе и железа. В связи с этим, их рекомендуют назначать за 1 час до приема пищи, однако это усиливает повреждающее действие соединений Fe2+ на слизистую кишечника, вплоть до развития ее некроза. 5
Причиной возникновения данных побочных явлений является гидролиз солей железа в желудке. Под действием желудочного сока ионные соли железа подвергаются гидролизу(диссоциации) в желудке, в результате чего свободные молекулы железа негативно воздействуют на слизистую оболочку ЖКТ и провоцируют возникновение побочных эффектов: тошнота, боль в животе, металлический привкус во рту, диарея/запор.
Второе поколение препаратов железа
Абсорбция железа в виде гидроксид-полимальтозного комплекса (ГПК) железа-III имеет принципиально иную схему по сравнению с его ионными соединениями и осуществляется путем активного всасывания при конкурентном обмене лигандами, уровень которых определяет скорость абсорбции железа Fe3+. Неионная структура, обеспечивающая стабильность комплекса и перенос железа с помощью транспортного белка, предотвращает в организме свободную диффузию ионов железа, то есть прооксидантные реакции. Однако биодоступность полимальтозного комплекса железа-III самая низкая среди всех препаратов железа, всего 10–15%.
В связи с большим размером молекулы (55 kDa), ее пассивная диффузия примерно в 40 раз медленнее, чем у ионов железа. 6 Такую низкую биодоступность приходится компенсировать большими суточными дозами ГПК.
Новое поколение препаратов железа — новое решение проблемы анемии
С конца 90-х начала 2000-х годов начали активно внедрять применение хелатных комплексов железа для терапии дефицита железа и анемии у людей. Хотя данная группа препаратов появилась гораздо раньше, и использовалась изначально в качестве пищевых добавок и в ветеринарии.
В 1893 году Альфред Вернер выдвинул постулат о новой молекулярной структуре, характеризующей эти стабильные молекулы. Спустя несколько лет, в 1920 году Морган и Дрю применили термин «хелат» к молекулярной структуре, постулированной Вернером. 7
Хелаты металлов представляют собой комплексные соединения металла с аминокислотой.
В отличие от солей металлов, лиганд в хелатном комплексе отдает электроны катиону, делая тем самым молекулу ионно-нейтральной, устойчивой к разным факторам, действующим в желудочно-кишечном тракте (рН, пища), а низкая молекулярная масса способствует максимальному усвоению железа при пероральном приеме. 8
Хелатные комплексы легче проникают через стенку кишечника и лучше усваиваются, не нарушая ионный и минеральный баланс клетки. 10
Бисглицинат железа состоит из одной молекулы железа, которая соединена с карбоксильными группами двух молекул глицина при помощи ковалентных связей.
Соотношение железа к лиганду 1:2 нейтрализует валентность железа, что обеспечивает его стойкость к разным факторам, действующим в желудочно-кишечном тракте (рН, пища). Поэтому соединение хелата не поддается гидролизации в желудке, полностью абсорбируется в тонком кишечнике и в неизмененном виде попадает внутрь энтероцитов, где и происходит высвобождение молекулы железа. 8
Бисглицинат железа — это источник негемированного железа. После перорального применения соединение в неизмененном виде попадает в энтероциты, где гидролизируется на железо и глицин. Стабильность соединения бисглицината железа объясняется тем, что оно не гидролизируется при разных значениях рН, а низкая молекулярная масса (204 г/моль) способствует максимальному усвоению железа при пероральном приеме. 8
В составе Multizan ® Феррум бисглицинат железа представлен запатентованным комплексом Ferrochel ® компании Albion Minerals — мировым лидером и новатором в области минерального аминокислотного хелатного питания.
Уникальная гамма хелатных минералов Albion ® :
Даже с повышенной биодоступностью бисглицинат железа безопасен. Всасывание контролируется запасами железа в организме, при этом большие количества обычно усваиваются людьми с более низким статусом железа. Организм, страдающий железодефицитной анемией, может потреблять 90% железа, в то время как организм, не страдающий железодефицитной анемией, может потреблять всего 10%, или ровно столько, сколько необходимо организму для компенсации потерь в метаболизме. Было обнаружено, что бисглицинат железа Ferrochel ® в 2,6 раза безопаснее, чем сульфат железа, и безопаснее, чем обычное неорганическое железо, содержащееся в пищевых продуктах и пищевых добавках. 13
Сравнительная таблица доз LD50 (cредняя доза вещества, вызывающая гибель половины членов испытуемой группы) различных препаратов железа при пероральном введении белым мышам. 14, 15, 16