Бис что это в информатике

БИС и СБИС и их разновидности

К большим интегральным микросхемам (БИС) условно можно отнести микросхемы 4-й степени интеграции (число элементов более 1000).

Существуют две разновидности БИС:

Полупроводниковые БИС. Полупроводниковые БИС содержат на одном кристалле сложные функциональные узлы: микропроцессоры и запоминающие устройства.

При создании БИС можно выделить три направления:

1) совершенствование существующих технологических процессов изготовления БИС и созданием новых (повышение разрешающей способности литографии, использованию ионной имплантации и др.). Имеются теоретические пределы для плотности элементов: для МДП – транзисторов 107 – 108, для биполярных транзисторов 106 на квадратном сантиметре. Использование многослойной металлизации также позволяет увеличить плотность элементов благодаря уменьшению длины межэлементных соединений и числа пересечений проводников.

2) увеличение размеров кристалла. Так, если в 1970 – 1973 гг. типовым размером кристалла был 1,5´1,5 мм, то в 1973 – 1975 гг. он увеличился до 6´6 мм, а в настоящее время – до 10´10 мм.

3) разработке новых схемотехнических решений.

Выбор номенклатуры разрабатываемых:

Конструктивно кристалл матричной БИС представляет собой совокупность регулярно расположенных логических ячеек (топологических фрагментов). Между последними предусматриваются свободные промежутки, необходимые для межсоединений. Матричная БИС выполняет заданные функции лишь на заключительном этапе изготовления, когда осуществлены необходимые межэлементные соединения.

С повышением степени интеграции повышается быстродействие схем, так как минимизируются паразитные параметры, вносимые металлизированными соединениями. Однако повышение степени интеграции связано и с рядом трудностей, проявляющихся на различных этапах создания БИС, особенно при разработке ее топологии. Трудоемкость ручного проектирования БИС может быть приближенно оценена по следующим формулам:

для аналоговых схем

Здесь N – число элементов БИС; Т – трудоемкость проектирования, ч. При полной автоматизации проектирования БИС трудоемкость проектирования

Из анализа выражений (1, 2, 3 ) видно, что проектировать БИС без применения ЭВМ практически невозможно. При числе элементов 105 автоматизация проектирования БИС позволяет уменьшить сроки разработки приблизительно в 120 раз.

Гибридные БИС (БГИС). В ГИС, так же как и в полупроводниковых ИС, происходит увеличение степени интеграции. В БГИС на одной подложке могут быть объединены как различные элементы, так и компоненты, в том числе ИС и БИС, выполненные по различным технологиям (биполярная, МДП-, тонко- и толстопленочная и др.). Это позволяет обеспечить широкий диапазон электрических параметров и гибко решать сложные инженерные задачи по созданию микроэлектронной аппаратуры.

Технологию БГИС можно рассматривать как замену существующих методов многослойного печатного монтажа при размещении на подложках бескорпусных полупроводниковых ИС, БИС и других компонентов. Чаще всего БГИС содержат бескорпусные ИС и БИС, объединенные металлической разводкой. Поэтому создание БГИС обычно сводится к коммутации ИС и БИС в единый функциональный комплекс, называемый микросборкой.

Дальнейшее совершенствование конструкции и технологии изготовления микроэлектронной аппаратуры заключается в замене ее блоков на БГИС и переходе от печатных плат к платам, изготовляемым по гибридной технологии.

Вернуться в ОГЛАВЛЕНИЕ

Отверстия печатных плат

Одними из главных элементов конструкции печатных плат являются отверстия. Большинство параметров ПП связано именно с размерами этих отверстий, которые могут быть:

— монтажными, куда устанавливаются и запаиваются выводы элементов;

— переходными (межслойными), обеспечивающими только электрические соединения между слоями платы.

Металлизированные монтажные отверстия являются одновременно переходными отверстиями. На печатных платах обычно присутствует некоторое количество неметаллизированных конструкционных отверстий, служащих для фиксации компонентов, крепления печатных плат к несущим элементам конструкций и других целей. Эти отверстия бывают гладкими, без контактных площадок и металлизации. Крепежные отверстия с целью удешевления производства выполняются одновременно с монтажными, поэтому в них присутствует внутренняя металлизация, но отсутствуют контактные площадки.

Металлизированные отверстия снабжены контактными площадками на наружных слоях, а в многослойных платах – еще на тех слоях, на которых к этим отверстия подводятся печатные проводники.

Контактные площадки и металлизация отверстий выполняются из меди. Все металлизированные поверхности могут иметь дополнительное гальваническое покрытие, которое выполняет функцию маски, защищающей участки медной фольги при травлении, что обеспечивает формирование элементов проводящего рисунка.

Бис что это в информатике. topr. Бис что это в информатике фото. Бис что это в информатике-topr. картинка Бис что это в информатике. картинка topr.

Главный параметр отверстия – диаметр(d), который у неметаллизированных отверстий совпадает с диаметром сверления. Для металлизированных отверстий диаметр самого отверстия отличается от диаметра сверления на двойную толщину металлизации, а в случае применения гальванического покрытия – еще и на двойную толщину покрытия.

Монтажные отверстия

Размеры монтажных отверстий определяются диаметром и сечением выводов элементов, монтируемых в эти отверстия. В любых металлизированных отверстиях следует предусматривать гарантированный зазор (не менее 0,1мм) для заполнения металлизированного отверстия расплавленным припоем.

Диаметры отверстий ПП обязательно выбираются из ряда, соответствующего ГОСТ 10317-79, который включает в себя диаметры от 0,4 до 3,0мм через 0,1мм, кроме диаметров 1,9 и 2,9мм.

Переходные отверстия

Диаметры переходных отверстий выполняют аналогично монтажным, но во всех случаях стараются сделать их с минимальными размерами, допустимыми для конкретной толщины ПП. Часто минимальный диаметр отверстия определяется диаметром сверла или возможностями производства. Минимальный диаметр переходного отверстия определяется из соотношения:

где k – отношение диаметра металлизированного отверстия к толщине платы;

Источник

Электроника СС БИС

«Электроника СС БИС» — советская векторно-конвейерная суперЭВМ на больших интегральных схемах (БИС). Архитектурно сходна с линией Cray. Введена в опытную эксплуатацию в 1989 году.

В конце 1970-х группа специалистов ИТМиВТ перешла в НИИ «Дельта» МЭП. Коллектив, во главе с Владимиром Андреевичом Мельниковым, решал задачу о применимости матричных БИС для создания высокопроизводительных вычислительных систем. Постепенно, от исследований перешли к разработке принципиально новой векторно-конвейерной супер-ЭВМ, получившей название «Электроника СС БИС». С 1983 года работа поддерживалась новым академическим Институтом проблем кибернетики РАН, главой которого стал академик Мельников.

Когда решался вопрос о выборе архитектуры будущей машины, был проведён анализ существующих на то время машин подобного типа. Выбор остановился на линии Сеймура Крея, откуда были взяты лишь основные архитектурные идеи и добавлены собственные оригинальные решения. Например, в «Электронике СС БИС» удалось реализовать выполнение операции деления, тогда как в Cray-1 была реализована лишь операция по получению обратного числа (для реализации деления, его необходимо было умножить на делимое). Для распараллеливания обработки скаляров и векторов, были выделены функциональные устройства для обработки операций с плавающей запятой — отдельно для скаляров и для векторов.

Удачным решением было применение массовой памяти на полупроводниках, занимающей промежуточное положение между оперативной и внешней памятью — в ней хранились часто используемые файлы.

Изначально разработчики были поставлены в сложные условия. Было принято политическое решение разрабатывать компьютер на базе интегральных схем предыдущего поколения (И-200), тогда как конкурирующая разработка Эльбрус-3, а также ЕС ЭВМ четвертой серии разрабатывались на базе более современных (И-300). Однако несмотря на это разработка была реализована в отличие от конкурентов

В 1985 году относительно (не была достигнута запланированная частота процессора [1] ) успешно прошёл испытания опытный образец «Электроники СС БИС-1» с одним процессором, показав производительность в 250 MFLOPS. В 1989 году прошли испытания головного образца на тестах. В 1991 году состоялись испытания системы с первой версией операционной системы, были изготовлены и налажены четыре образца, началась их установка у заказчиков. Одна из машин была соединена в двухмашинный комплекс. Пиковая производительность системы в двухмашинном варианте составляла 500 MFLOPS. В том же году был разработан проект многопроцессорной системы «Электроника СС БИС-2» с производительностью до 10 GFLOPS. Проект предполагалось реализовать на более совершенных БИС (И-400 и возможно И-500, в случае её быстрого создания). За счет этого предполагалось увеличение тактовой частоты и интегрированности систем. Кроме основных многопроцессорных машин в неё планировалось включить мониторные машины для управления системой подготовки задач, а также подсистему с массовым параллелизмом с глубиной 12 (по четыре исполнительных устройства на каждую операцию). Предполагалось достичь программной совместимости с как «СС БИС-1», так и с Cray X-MP и Cray Y-MP. В планы коллектива Института проблем кибернетики РАН входило создание неоднородной системы. Но в 1993 году, после смерти В. А. Мельникова, работы были прекращены.

Источник

Интегральная схема

Бис что это в информатике. 250px Photo SMDchips. Бис что это в информатике фото. Бис что это в информатике-250px Photo SMDchips. картинка Бис что это в информатике. картинка 250px Photo SMDchips.

Бис что это в информатике. magnify clip. Бис что это в информатике фото. Бис что это в информатике-magnify clip. картинка Бис что это в информатике. картинка magnify clip.

Бо́льшая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС, чипом) — ИС, заключённую в корпус. В то же время выражение чип-компоненты означает «компоненты для поверхностного монтажа» (в отличие от компонентов для пайки в отверстия на плате).

Содержание

История

Ранние логические ИС упомянутых серий строились буквально из стандартных компонентов, размеры и конфигурации которых были заданы технологическим процессом. Схемотехники, проектировавшие логические ИС конкретного семейства, оперировали одними и теми же типовыми диодами и транзисторами. В 1961—1962 парадигму проектирования сломал ведущий разработчик Sylvania Том Лонго, впервые использовав в одной ИС различные конфигурации транзисторов в зависимости от их функций в схеме. В конце 1962 Sylvania выпустила в продажу первое семейство разработаной Лонго транзисторно-транзисторной логики (ТТЛ) — исторически первый тип интегральной логики, сумевший надолго закрепиться на рынке. В аналоговой схемотехнике прорыв подобного уровня совершил в 1964—1965 годах разработчик операционных усилителей Fairchild Боб Видлар.

Уровни проектирования

В настоящее время большая часть интегральных схем проектируется при помощи специализированных САПР, которые позволяют автоматизировать и значительно ускорить производственные процессы, например, получение топологических фотошаблонов.

Классификация

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Технология изготовления

Бис что это в информатике. 220px %D0%93%D0%B8%D0%B1%D1%80%D0%B8%D0%B4%D0%BD%D0%B0%D1%8F %D0%BC%D0%B8%D0%BA%D1%80%D0%BE%D1%81%D1%85%D0%B5%D0%BC%D0%B0. Бис что это в информатике фото. Бис что это в информатике-220px %D0%93%D0%B8%D0%B1%D1%80%D0%B8%D0%B4%D0%BD%D0%B0%D1%8F %D0%BC%D0%B8%D0%BA%D1%80%D0%BE%D1%81%D1%85%D0%B5%D0%BC%D0%B0. картинка Бис что это в информатике. картинка 220px %D0%93%D0%B8%D0%B1%D1%80%D0%B8%D0%B4%D0%BD%D0%B0%D1%8F %D0%BC%D0%B8%D0%BA%D1%80%D0%BE%D1%81%D1%85%D0%B5%D0%BC%D0%B0.

Бис что это в информатике. magnify clip. Бис что это в информатике фото. Бис что это в информатике-magnify clip. картинка Бис что это в информатике. картинка magnify clip.

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В — логической единице; а для микросхем ЭСЛ-логики при напряжении питания −5,2 В диапазон −0,8…−1,03 В — логической единице, а −1,6…−1,75 В — логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость к статическому электричеству — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке отказались.

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х он был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

В 1990-х годах, из-за нового витка «войны платформ», стали внедряться в производство и быстро совершенствоваться экспериментальные методы: в начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500—600 нм), потом технология дошла до 250—350 нм. Следующие процессоры (Pentium II, K6-2+, Athlon) уже делали по технологии 180 нм. В конце 1990-х фирма Texas Instruments создала ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм.

Следующие процессоры делали по УФ-технологии 45 нм (сперва это был Core 2 Duo). Другие микросхемы достигли и превзошли этот уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung — 40 нм). В 2010 году в розничной продаже появились процессоры, разработанные по 32-нм тех. процессу. [3] [4] В апреле 2012 года в продажу поступили процессоры, разработанные по 22-нм тех. процессу (ими стали процессоры фирмы Intel, выполненные по архитектуре Ivy Bridge). [источник не указан 62 дня] Процессоры с технологией 14 нм планируется к внедрению в 2014 году, а 10 нм — около 2018 года. [источник не указан 62 дня]

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.

Корпус микросхемы — это несущая система и часть конструкции, предназначенная для защиты от внешних воздействий и для электрического соединения с внешними цепями посредством выводов. Корпуса стандартизованы для упрощения технологии изготовления готовых изделий.

Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату).

Специфические названия микросхем

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor ) — Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

Правовая защита

Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448 ГК РФ).

Автору топологии интегральной микросхемы принадлежат следующие интеллектуальные права: 1) исключительное право; 2) право авторства.

Автору топологии интегральной микросхемы принадлежат также другие права, в том числе право на вознаграждение за использование служебной топологии.

Исключительное право на топологию действует в течение десяти лет. Правообладатель в течение этого срока может по своему желанию зарегистрировать топологию в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам. [5]

Интересные факты

В мае 2011 фирмой Altera была выпущена, по 28 нм техпроцессу, самая большая в мире микросхема, состоящая из 3,9 млрд транзисторов. [6]

Источник

Большая интегральная схема

Бис что это в информатике. 200px photo smdchips. Бис что это в информатике фото. Бис что это в информатике-200px photo smdchips. картинка Бис что это в информатике. картинка 200px photo smdchips.

Бис что это в информатике. 3716a629d0ceaa7fbbf503d56b548052. Бис что это в информатике фото. Бис что это в информатике-3716a629d0ceaa7fbbf503d56b548052. картинка Бис что это в информатике. картинка 3716a629d0ceaa7fbbf503d56b548052.

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро)схе́ма (ИС, ИМС, м/сх), чип, микрочи́п (англ. chip — щепка, обломок, фишка) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент (2009 год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Содержание

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

В 1958 году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был одним из основателей небольшой компании по производству полупроводников Fairchild Semiconductor. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и учёные решили попробовать их объединить на одном монолитном кристалле из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В 1959 году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в 1961 году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность.

Первая советская полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Первая в СССР полупроводниковая интегральная микросхема была разработана (создана) на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ (Микрон). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились НИИ-35 (директор Трутко) и Фрязинским заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).[1]

Уровни проектирования

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ-логики при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распротранёнными логиками микросхем. Где небходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но наиболее энергопотребляющими и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется фотопроцесс, при этом схему формируют на подложке, обычно из диоксида кремния, полученной термическим оксидированием кремния. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.

В 70-х годах ширина полосы составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.

В 90-х годах из-за нового витка «войны платформ» экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 90-х процессоры (например ранние Pentium Pro) изготавливали по технологии 0,5-0,6 мкм. Потом их уровень поднялся до 0,25-0,35 мкм. Следующие процессоры (Pentium 2, K6-2+,

В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню, совершенствуя второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,045 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung — 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы 2006 году так и не сбылись.

Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.
Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку.
Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы.
В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Специфические названия микросхем

Из большого количества цифровых микросхем изготавливались процессоры. Фирма Intel 4004, которая выполняла функции процессора. Такие микросхемы получили название микропроцессор. Микропроцессоры фирмы Intel совершенствовались: Intel 8008, Intel 8080, Intel 8086, Intel 8088 (на основе двух последних микропроцессоров фирма персональные компьютеры).

Микропроцессор выполняет в основном функции АЛУ (арифметико-логическое устройство), а дополнительные функции связи с периферией выполнялись с помощью специально для этого изготовленных наборов микросхем. Для первых микропроцессоров число микросхем в наборах исчислялось десятками, а сейчас это набор из двух-трех микросхем, который получил термин чипсет.

Микропроцессоры со встроенными контроллерами памяти и ввода-вывода, ОЗУ и ПЗУ, а также другими дополнительными функциями называют микроконтроллерами.

См. также

Литература

Пассивные твердотельныеРезистор · Переменный резистор · Подстроечный резистор · Варистор · Конденсатор · Индуктивность · Кварцевый резонатор · Предохранитель · Самовосстанавливающийся предохранитель · Трансформатор
Активные твердотельныеДиод · Светодиод · Фотодиод · Полупроводниковый лазер · Диод Шоттки · Стабилитрон · Стабистор · Варикап · Вариконд · Диодный мост · Лавинно-пролётный диод · Туннельный диод · Диод Ганна
Транзистор · Биполярный транзистор · Полевой транзистор · КМОП-транзистор · Однопереходный транзистор · Фототранзистор · Составной транзистор
Интегральная схема · Цифровая интегральная схема · Аналоговая интегральная схема
Тиристор · Симистор · Динистор
Пассивные вакуумныеБареттер
Активные вакуумные и газоразрядныеЭлектронная лампа · Электровакуумный диод · Триод · Тетрод · Пентод · Механотрон · Клистрон · Магнетрон · Амплитрон · Платинотрон · Электронно-лучевая трубка · Лампа бегущей волны
Устройства отображенияЭлектронно-лучевая трубка · ЖК монитор · Светодиод · Газоразрядный индикатор · Флажковый индикатор · Семисегментный индикатор
Акустические устройства и датчикиМикрофон · Динамик · Тензорезистор · Пьезокерамический излучатель
Термоэлектрические устройстваТермистор · Термопара · Элемент Пельтье

Полезное

Смотреть что такое «Большая интегральная схема» в других словарях:

БОЛЬШАЯ ИНТЕГРАЛЬНАЯ СХЕМА — (БИС) интегральная схема с высокой степенью интеграции (число элементов в ней достигает 104), используемая в электронной аппаратуре как функционально законченный узел устройств вычислительной техники, автоматики, измерительной техники и др … Большой Энциклопедический словарь

большая интегральная схема — БИС — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и электроэнергетике. 2 е издание М.: РУССО, 1995 616 с.] Тематики… … Справочник технического переводчика

большая интегральная схема — (БИС), интегральная схема с высокой степенью интеграции (число элементов в ней достигает 104), используемая в электронной аппаратуре как функционально законченный узел устройств вычислительной техники, автоматики, измерительной техники и др. * *… … Энциклопедический словарь

большая интегральная схема — didelės integracijos grandynas statusas T sritis automatika atitikmenys: angl. grand schale integration; high integration circuit; large scale integration circuit vok. Großintegrationsschaltung, f; hochintegrierter Schaltkreis, m rus. большая… … Automatikos terminų žodynas

большая интегральная схема — (БИС), сложная интегральная схема с большой степенью интеграции. БИС создают методами планарной технологии (от английского planar – плоский, ровный) путём формирования их элементов с одной (рабочей) стороны полупроводниковой пластины (подложки).… … Энциклопедия техники

большая интегральная схема микропроцессора — didelės integracijos mikroprocesorius statusas T sritis automatika atitikmenys: angl. large scale integration microprocessor vok. Hochintegrationsmikroprozessor, m rus. большая интегральная схема микропроцессора, f; микропроцессор с высокой… … Automatikos terminų žodynas

большая интегральная схема модема — didelės integracijos modemas statusas T sritis radioelektronika atitikmenys: angl. large scale integration modem vok. Hochintegrationsmodem, m rus. большая интегральная схема модема, f; модем с высокой степенью интеграции, m pranc. circuit… … Radioelektronikos terminų žodynas

большая интегральная схема с избирательными межсоединениями — didelės integracijos grandynas su atrankiaisiais vidiniais sujungimais statusas T sritis radioelektronika atitikmenys: angl. discretionary routed large scale integration vok. hochintegrierte Schaltung mit wählbaren Leiterbahnverbindungen, f rus.… … Radioelektronikos terminų žodynas

большая интегральная схема с фиксированными межсоединениями — didelės integracijos grandynas su fiksuotais vidiniais sujungimais statusas T sritis radioelektronika atitikmenys: angl. large scale integration/fixed interconnection pattern vok. hochintegrierte Schaltung mit vorgegebenen Leiterbahnverbindungen … Radioelektronikos terminų žodynas

большая интегральная схема на КНС-структуре — didelės integracijos silicio grandynas ant safyro statusas T sritis radioelektronika atitikmenys: angl. silicon on sapphire/large scale integration vok. hochintegrierter Silizium auf Saphir Schaltkreis, m rus. большая интегральная схема на КНС… … Radioelektronikos terminų žodynas

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *