Бином ньютона что это простыми
Бином Ньютона.
Навигация по странице.
Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля.
Треугольник Паскаля.
Биномиальные коэффициенты для различных n удобно представлять в виде таблицы, которая называется арифметический треугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид:
Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральных n :
Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.
Свойства биномиальных коэффициентов.
Первые два свойства являются свойствами числа сочетаний.
Доказательство формулы бинома Ньютона.
Приведем доказательство формулы бинома Ньютона, то есть докажем справедливость равенства .
Получили верное равенство.
Докажем, что верно равенство , основываясь на предположении второго пункта.
Поехали!
Раскрываем скобки
Группируем слагаемые
Так как и
, то
; так как
и
, то
; более того, используя свойство сочетаний
, получим
Подставив эти результаты в полученное выше равенство
придем к формуле бинома Ньютона .
Этим доказана формула бинома Ньютона.
Рассмотрим подробные решения примеров, в которых применяется формула бинома Ньютона.
Напишите разложение выражения (a+b) 5 по формуле бинома Ньютона.
Найдите коэффициент бинома Ньютона для шестого члена разложения выражения .
В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.
Доказать, что значение выражения , где n – натуральное число, делится на 16 без остатка.
Представим первое слагаемое выражение как и воспользуемся формулой бинома Ньютона:
Бином ньютона
Бином Ньютона — это формула
,
где — биномиальные коэффициенты, n — неотрицательное целое число.
Содержание
Доказательство
Докажем это равенство, используя метод математической индукции:
Пусть утверждение для n верно:
Тогда надо доказать утверждение для n + 1 :
Извлечём из первой суммы слагаемое при k = 0
Извлечём из второй суммы слагаемое при k = n
Теперь сложим преобразованные суммы:
Что и требовалось доказать
— одно из тождеств биномиальных коэффициентов
Для ненатуральных степеней
где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты находятся по формуле:
.
сходится при .
В частности, при и
получается тождество
Переходя к пределу при и используя второй замечательный предел
, выводим тождество
именно таким образом впервые полученное Эйлером.
История
Считается, что эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль, описавший её в XVII веке. Тем не менее, она была известна ещё китайскому математику Яну Хуэю, жившему в XIII веке. Возможно, её открыл персидский учёный, поэт и философ Омар Хайям.
Исаак Ньютон обобщил формулу для прочих показателей степени.
В художественной литературе
В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном.
Об этой специфической роли бинома Ньютона в культуре писал известный математик В. А. Успенский [1].
См. также
Полезное
Смотреть что такое «Бином ньютона» в других словарях:
бином ньютона — БИНОМ, а, м. (или бином ньютона). Ирон. О чем л. кажущемся сложным, запутанным. Возм. распространилось под влиянием романа М. Булгакова «Мастер и Маргарита» … Словарь русского арго
БИНОМ НЬЮТОНА — БИНОМ НЬЮТОНА, математическое правило разложения алгебраического выражения (а+b)n в ряд степеней численных значений х и у (где n положительное число). При n 2 разложение выглядит таким образом: (х+у)2=х2+2ху+у2 … Научно-технический энциклопедический словарь
Бином Ньютона — алгебраическая формула, открытая Ньютоном, выражающая какую угодно степень двучлена, а именно: (х + а)n = хn + n/1(axn 1) + [n/(n 1)/1.2](а2хn 2) + …[n(n 1)(n 2)…(n m+1)/1.2.3…m](anxn m) + … или, в компактной форме, пользуясь символом n! =… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Бином Ньютона — Разг. Шутл. О чём л. сложном, запутанном. Елистратов, 41 … Большой словарь русских поговорок
Подумаешь, бином Ньютона! — Из романа (гл. 18 «Неудачливые визитеры») «Мастер и Маргарита» (1940) Михаила Афанасьевича Булгакова (1891 1940). Слова Коровьева Фагота, комментирующего диалог между Воландом и буфетчиком Андреем Фокичем Соковым. Последний пришел жаловаться на… … Словарь крылатых слов и выражений
бином — а, м. binôme, лат. binomia m. 1. мат. Алгебраическое выражение, представляющее сумму или разность одночленов; двучлен. БАС 2. Боюсь, еслиб я и осмелился представить здесь самое простое развитие двучленника (бинома) Ньютонова необходимого для сего … Исторический словарь галлицизмов русского языка
БИНОМ — (от лат. bis дважды, и греч. nomos часть, отдел). Двучлен (в алгебре). Бином Ньютона общая формула для возведения двучленного количества в любую степень. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИНОМ в… … Словарь иностранных слов русского языка
Бином — (лат. bis дважды, nomen имя) или двучлен частный случай полинома (многочлена), состоящего из двух слагаемых мономов (одночленов). Например: Для вычисления степеней биномов используется бином Ньютона: А также … Википедия
Бином Ньютона
Вы будете перенаправлены на Автор24
Бином Ньютона — это формула, использующаяся для разложения суммы двух чисел или переменных, возведённых в степень. Формула бинома Ньютона выглядит следующим образом:
$C_n^k=(a + x)^n = a^n + C^1_n \cdot a^
Биномиальные коэффициенты при этом определяются по следующей формуле:
Вывод формулы бинома Ньютона и доказательство
Все мы помним наизусть формулы разложения квадрата суммы и куба, для тех, кто всё же имеет какие-то сомнения, ниже мы привели их:
Эти формулы есть не что иное, как частные случаи второй и третьей степени для бинома Ньютона.
$(a + x)^n = A_0 + A_1x + A_2x^2 + A_3x^3 + … +A_nx^n \left(1\right)$
$((a + x)^n)’ = n(a + x)^
$(A_0 + A_1x + A_2x^2 + A_3x^3 + … +A_nx^n)’ = A_1 + 2A_2x + 3A_3x^2 + … +nA_n \cdot x^
$n \cdot (a+ x)^
Готовые работы на аналогичную тему
$n(n-1)a^
$n(n-1)\cdot … \cdot (n-k + 1)a^
Полученное выражение используется для вычисления биномиальных коэффициентов.
Сосчитаем биномиальные коэффициенты:
Теперь воспользуемся вычисленными коэффициентами для разложения бинома Ньютона:
Бином Ньютона: треугольник Паскаля
Как вы уже заметили, биномиальные коэффициенты имеют свойство повторяться, поэтому все их можно записать в виде специальной таблицы, называемой треугольником Паскаля:
Рисунок 1. Бином Ньютона: треугольник Паскаля. Автор24 — интернет-биржа студенческих работ
По рисунку 1 видно, что каждый коэффициент равен сумме двух стоящих слева и справа над ним в предыдущей строчке, так что этой таблицей можно пользоваться для более быстрого вычисления биномиальных коэффициентов в случае показателей степеней, представленных целыми неотрицательными числами.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 12 02 2021
Ньютона бином
Полезное
Смотреть что такое «Ньютона бином» в других словарях:
НЬЮТОНА БИНОМ — формула, выражающая целую положительную степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых (коэффициенты при них называются биномиальными коэффициентами; их обозначают или : Частными случаями бинома Ньютона при n=2 и n=3 … Большой Энциклопедический словарь
Ньютона бином — формула, выражающая целую положительную степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых (коэффициенты при них называются биномиальными коэффициентами; их обозначают ): Частными случаями бинома Ньютона при n = 2 и… … Энциклопедический словарь
НЬЮТОНА БИНОМ — название формулы, позволяющей выписывать разложение алгебраической суммы двух слагаемых произвольной степени. Впервые была предложена Ньютоном в 1664 1665: Коэффициенты формулы называются биномиальными коэффициентами. Если n положительное целое… … Энциклопедия Кольера
НЬЮТОНА БИНОМ — формула разложения произвольной натуральной степени двучлена в многочлен, расположенный по степеням одного из слагаемых двучлена: где биномиальные коэффициенты. Для пслагаемых формула (*) принимает вид При произвольном показателе т,… … Математическая энциклопедия
НЬЮТОНА БИНОМ — ф ла, выражающая целую положит. степень суммы двух слагаемых (двучлена, бинома) через степени этих слагаемых; Частными случаями Н. б. при п = 2 и п = 3 являются ф лы квадрата и куба суммы двух слагаемых х и у … Большой энциклопедический политехнический словарь
БИНОМ — (от би. и лат. nomen имя) то же, что двучлен. О биноме вида (x+y)n см. в ст. Ньютона бином … Большой Энциклопедический словарь
бином — а; м. [от лат. bis дважды и греч. nomē часть, доля] Матем. Алгебраическое выражение, представляющее сумму или разность двух одночленов; двучлен. * * * бином (от би. и лат. nomen имя), то же, что двучлен. О биноме вида (х + y)n см. Ньютона… … Энциклопедический словарь
Бином — (от би (См. Би. ). и лат. nomen имя) двучлен, сумма или разность двух алгебраических выражений, называемых членами Б.; например a + b, и т.д. О степенях Б., то есть выражениях вида (х + у) n, см. Ньютона бином … Большая советская энциклопедия
Бином Ньютона — математическая формула с примером решения и объяснением
Рассматривая эти произведения, замечаем, что все они составлены по одному и тому же закону, а именно:
Произведение составляет многочлен, расположенный по убывающим степеням буквы х.
Показатель первого члена равен числу перемножаемых биномов; показатели при х в следующих членах убывают на 1; последний член не содержит х (содержит его в нулевой степени).
Коэффициент первого члена есть 1; коэффициент второго члена есть сумма всех вторых членов перемножаемых биномов; коэффициент третьего члена есть сумма всех произведений вторых членов, взятых по два; коэффициент четвёртого члена есть сумма всех произведений вторых членов, взятых по три. Последний член есть произведение всех вторых членов.
Итак, допустим, что верно следующее равенство:
(x+α) (x+b) (х+с)… (x+k) =
где для краткости мы положим:
Умножим обе части допущенного равенства на бином x+l:
Рассматривая это новое произведение, убеждаемся, что оно подчиняется такому же закону, какой мы предположили верным для m биномов. Действительно, во-первых, этому закону следуют показатели буквы х; во-вторых, ему же следуют и коэффициенты, так как коэффициент второго члена S+l есть сумма всех вторых членов перемножаемых биномов, включая сюда и l; коэффициент третьего члена S₂+lS₁ есть сумма парных произведений всех вторых членов, включая сюда и l, и т. д.; наконец, есть произведение всех вторых членов: abc… kl.
Мы видели, что закон этот верен для произведения двух, трёх и четырёх биномов; следовательно, по доказанному теперь, он должен быть верен и для произведения 4+1, т. е. для произведения пяти биномов, если же он верен для произведения пяти биномов, то он верен и для произведения 5+1, т. е. для произведения шести биномов, и т. д.
Формула бинома Ньютона
Предположим, что в доказанном нами равенстве
все вторые члены биномов одинаковы, т. е. что a=b=c= … =k. Тогда левая часть будет степень бинома . Посмотрим, во что обратятся коэффициенты S₁, S₂, …,
.
Коэффициент S₁, равный a+b+c+ … +k, обратится в та. Коэффициент S₂, равный ab+ac+ad+ …. обратится в число α², повторённое столько раз, сколько можно составить сочетаний из m элементов по 2, т. е. обратится в . Коэффициент S₃, равный abc+abd+…, обратится в число а³, повторённое столько раз, сколько можно составить сочетаний из т элементов по 3, т. е.
и т. д. Наконец, коэффициент
, равный abc...k, обратится в
. Таким образом, мы получим:
Это равенство известно как формула бинома Ньютона, причём многочлен, стоящий в правой части формулы, называется разложением бинома. Рассмотрим особенности этого многочлена.
Свойства формулы бинома Ньютона
Из этих свойств мы укажем следующие 10:
1) Показатели буквы х уменьшаются на 1 от первого члена к последнему, причём в первом члене показатель х равен показателю степени бинома, а в последнем он есть 0; наоборот, показатели буквы а увеличиваются на 1 от первого члена к последнему, причём в первом члене показатель при а есть 0; а в последнем он равен показателю степени бинома. Вследствие этого сумма показателей при х и а в каждом члене одна и та же, а именно: она равна показателю степени бинома.
2) Число всех членов разложения есть m+1, так как разложение содержит все степени а от 0 до m включительно.
3) Коэффициенты равны: у первого члена — единице, у второго члена — показателю степени бинома, у третьего члена — числу сочетаний из m элементов по 2, у четвёртого члена — числу сочетаний из m элементов по 3; вообще коэффициент (n+1)-ro члена есть число сочетаний из m элементов по n. Наконец, коэффициент последнего члена равен числу сочетаний из т элементов по m, т. е. 1.
Заметим, что эти коэффициенты называются биномиальными.
4) Обозначая каждый член разложения буквой T с цифрой внизу, указывающей номер места этого члена в разложении, т. е. первый член T₁, второй член T₂ и т. д., мы можем написать:
Эта формула выражает общий член разложения, так как из неё мы можем получить все члены (кроме первого), подставляя на место n числа: 1, 2, 3,…. m.
5) Коэффициент первого члена от начала разложения равен единице, коэффициент первого члена от конца тоже равен единице. Коэффициент второго члена от начала есть m, т. е. ; коэффициент второго члена от конца есть
; но так как
, то эти коэффициенты одинаковы. Коэффициент третьего члена от начала есть
, а третьего члена от конца есть
; но
, поэтому и эти коэффициенты одинаковы и т. д. Значит:
Коэффициенты членов, одинаково удалённых от концов разложения, равны между собой.
6) Рассматривая биномиальные коэффициенты:
мы замечаем, что при переходе от одного коэффициента к следующему числители умножаются на числа, всё меньшие и меньшие (на m—1, на m — 2, на m — 3 и т. д.), а знаменатели умножаются на числа, всё большие и большие (на 2, на 3, на 4 и т. д.). Вследствие этого коэффициенты сначала возрастают (пока множители в числителе остаются большими соответственных множителей в знаменателе), а затем убывают. Так как коэффициенты членов, равно отстоящих от концов разложения, одинаковы, то наибольший коэффициент должен находиться посередине разложения. При этом, если число всех членов разложения нечётное (что бывает при чётном показателе бинома), то посередине будет один член с наибольшим коэффициентом; если же число всех членов чётное (что бывает при нечётном показателе бинома), то посередине должны быть два члена с одинаковыми наибольшими коэффициентами. Например:
(х+α)⁴=x⁴+4αx³+6α²x²+4α³x+α⁴;
(x+α)⁵=x⁵+5αx⁴+10α²x3+10α³x²+5α⁴x+α⁵∙
7) Из сравнения двух рядом стоящих членов:
заключаем, что:
Для получения коэффициента следующего члена достаточно умножить коэффициент предыдущего члена на показатель буквы х в этом члене и разделить на число членов, предшествующих определяемому.
Пользуясь этим свойством, можно сразу писать, например, (x+a)⁷=x⁷+7ax⁶+…
Теперь уже выписаны члены до середины ряда, остальные получим, основываясь на свойстве пятом:
(х+а)⁷ =х⁷-7αx⁶+21α²x⁵+35α³x⁴+35α⁴x³+21α⁵x²+7α⁶x+α⁷.
8) Сумма всех биномиальных коэффициентов равна . Действительно, положив в формуле бинома x=a=1, получим:
Например, сумма коэффициентов в разложении (х+a)⁷ равна
1+7+21+35+35 +21+7+1 = 128=2⁷.
9) Заменив в формуле бинома а на — а, получим:
т. е.
следовательно, знаки + и — чередуются.
10) Если в последнем равенстве положим x=α =1, то найдём:
Сумма биномиальных коэффициентов, стоящих на нечётных местах, равна сумме биномиальных коэффициентов, стоящих на чётных местах.
Применение формулы бинома к многочлену
Формула бинома Ньютона позволяет возвышать в степень многочлен. Так:
(α+ b+c)⁴ = [(а+b)+с]⁴= (a+b)⁴+4c (а+b)³+6c² (а+b)²+4c³ (a+b)+c⁴.
Вывод формулы бинома ньютона
Возникает вопрос, будет ли закономерность, наблюдаемая в этих формулах, обладать общностью, т. е. будет ли справедливой формула
при всяком натуральном значении n?
Воспользуемся методом полной индукции. Допустим, что формула верна для произвольно взятого натурального числа р, т. е. предположим справедливым следующее равенство:
Умножим обе части этого предполагаемого равенства на
и приняв во внимание, что
Из предположения, что формула верна при мы пришли к тому, что формула оказалась верной и при
Но поскольку, кроме того, формула верна при
то она должна быть верна и при любом натуральном значении n.
Теперь легко получить разложение и для
Последняя формула и называется формулой бинома Ньютона. Ее правая часть называется разложением степени бинома.
Числа называются биномиальными коэффициентами.
Свойства разложения бинома
В разложении бинома содержится членов на один больше, чем показатель степени бинома.
Все члены разложения имеют относительно букв а и b одно и то же измерение, равное показателю степени бинома. (Измерением одночлена относительно букв а и b называется сумма показателей степеней этих букв, входящих в этот одночлен.)
Поскольку все члены разложения имеют одинаковое измерение относительно букв а и b, то это разложение является однородным многочленом относительно букв а и b (см. стр. 450).
В разложении показатель степени буквы а последовательно понижается на единицу, начиная с показателя n, а показатель степени буквы b последовательно повышается на единицу, начиная с показателя, равного нулю.
Член разложения является
членом разложения и обозначается символом
называется формулой общего члена разложения, так как, давая букве k целые значения от 0 до n, мы можем получить из нее любой член разложения.
Теперь напишем разложение для выражения
Свойства биномиальных коэффициентов
1. Биномиальные коэффициенты, равноудаленные от начала и конца разложения, равны между собой. Действительно, по первому свойству числа сочетаний имеем:
2. Сумма биномиальных коэффициентов равна числу 2, возведенному в степень, равную показателю степени бинома.
Доказательство:
Положим, в формуле бинома
3. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме, биномиальных коэффициентов, стоящих на нечетных местах.
Доказательство:
Полагая в тождестве
Перенеся все отрицательные члены в левую часть, получим:
что и требовалось доказать.
Если вместо биномиальных коэффициентов
подставить их значения, то формула бином Ньютона примет вид:
Формулу бинома Ньютона принято записывать ради краткости в следующем символическом виде:
Читателю может показаться непонятным, почему столь элементарная формула
где n — целое положительное число, носит имя великого ученого Ньютона, тем более что эта формула была известна до Ньютона. Например, ее знал Аль-Каши (XV век) и она встречается в трудах Паскаля. Объясняется это тем, что именно Ньютоном была обобщена эта формула для любого действительного показателя.
Ньютон впервые показал, что выражение
где и
— любое действительное число, равняется сумме следующего сходящегося, ряда:
Например, если то
Арифметический треугольник, или треугольник паскаля
Написанная ниже таблица
называется треугольником Паскаля *.
По боковым сторонам этой таблицы стоят единицы, внутри же стоят числа, получающиеся сложением двух соответствующих чисел предыдущей строки. Например, число 21 в 8-й строке получается сложением стоящих над ним чисел 6 и 15.
строка этой таблицы дает биномиальные коэффициенты разложения n-й степени бинома. Например:
Треугольник Паскаля получается из следующей таблицы:
Треугольник Паскаля приведен в книге Паскаля «Трактат об арифметическом треугольнике», изданной после его смерти в 1665 году.
Примеры с решением на Бином Ньютона
1. В разложении коэффициент третьего члена на 44 больше коэффициента второго члена. Найти свободный член, т. е. член разложения, не зависящий от x (членом, не зависящим от х, будет тот, который содержит х в нулевой степени).
Решение:
Отсюда
Приравняв показатель степени буквы х к нулю, получим:
Отсюда
Искомым свободным членом будет четвертый, и он будет равен т. е. 165.
2. Сколько рациональных членов содержится в разложении
Решение:
Для рациональности члена разложения необходимо, чтобы число k было кратно четырем. Но тогда будет числом четным и
будет числом рациональным.
Число k может принимать целые значения 0, 1, 2….. 100. Среди этих чисел кратными четырем будут
Пользуясь формулой получим:
или
Следовательно, в разложении
рациональных членов будет 26.
3. Доказать, что значение выражения
где n — натуральное число, делится на 9.
Доказательство:
Каждое слагаемое последней суммы делится на 9, следовательно, и вся эта сумма, т. е. значение выражения делится на 9, что и требовалось доказать.
Дополнение к Бином Ньютону
Решение заданий и задач по предметам:
Дополнительные лекции по высшей математике:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института