Библиотека opengl что это

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

OpenGL (Open Graphics Library)

Библиотека насчитывает около 300 различных команд, которые программист использует для задания объектов и операций, необходимых для написания интерактивных графических приложений. Используется также при создании компьютерных игр, САПР, виртуальной реальности, визуализации в научных исследованиях.

Библиотека OpenGL достаточно проста в использовании и обучении, обладает очень широким спектром возможностей. Вот некоторые из ее достоинств:

На сегодняшний день графическая система OpenGL поддерживается большинством производителей аппаратных и программных платформ. Эта система доступна тем, кто работает в среде Microsoft Windows, пользователям компьютеров Apple, Unix-платформ, PlayStation 3. Свободно распространяемые коды системы Mesa (пакет API на базе OpenGL) можно компилировать в большинстве операционных систем, в том числе в Linux. Из лицензионных соображений Mesa является «неофициальной” реализацией OpenGL, хотя полностью с ней совместима на уровне кода.

Спецификация OpenGL пересматривается Консорциумом ARB (Architecture Review Board). Консорциум состоит из компаний, заинтересованных в создании широко распространённого и доступного API. Согласно официальному сайту OpenGL, членами ARB с решающим голосом на ноябрь 2004 года являются производители профессиональных графических аппаратных средств SGI, 3Dlabs, Matrox и Evans & Sutherland (военные приложения), производители потребительских графических аппаратных средств ATI и NVIDIA, производитель процессоров Intel, и изготовители компьютеров и компьютерного оборудования IBM, Apple, Dell, Hewlett-Packard и Sun Microsystems, а также один из лидеров компьютерной игровой индустрии id Software. Microsoft, один из основоположников Консорциума, покинула его в марте 2003 года. Помимо постоянных членов, каждый год приглашается большое количество других компаний, становящихся частью OpenGL ARB в течение одного года. Такое большое число компаний, вовлеченных в разнообразный круг интересов, позволило OpenGL стать прикладным интерфейсом широкого назначения с большим количеством возможностей.

Содержание

История развития OpenGL

Графическая библиотека OpenGL, как утвержденный индустриальный стандарт, разработана и утверждена в 1992 году. Компьютерная графика нашла широкое распространение и применение в повседневной жизни. Учёные используют компьютерную графику для анализа результатов моделирования. Инженеры и архитекторы используют трёхмерную графику для создания виртуальных моделей. Кинематографисты создают спецэффекты или полностью анимированные фильмы (“Шрек”, “История игрушек” и др.). В последние годы широкое распространение получили также компьютерные игры, максимально использующие трёхмерную графику для создания виртуальных миров.

Распространению компьютерной графики сопутствовали свои трудности. В 1990-х разработка программного продукта, способного работать на большом количестве графического оборудования, была сопряжена с большими временны́ми и финансовыми затратами. Было необходимо отдельно создавать модули для каждого типа графических адаптеров, что порой приводило к размножению одинакового программного кода. Это сильно тормозило развитие и распространение компьютерной графики. [Источник 2]

OpenGL 1.0

Silicon Graphics Incorporated (SGI) специализировалась на создании высокотехнологического графического оборудования и программных средств. Являясь в то время лидером в трёхмерной графике, SGI видела проблемы и барьеры в росте рынка. Поэтому было принято решение стандартизировать метод доступа к графической аппаратуре на уровне программного интерфейса.

Таким образом появился программный интерфейс OpenGL, который стандартизирует доступ к графической аппаратуре путём смещения ответственности за создание аппаратного драйвера на производителя графического устройства. Это позволило разработчикам программного обеспечения использовать более высокий уровень абстракции от графического оборудования, что значительно ускорило создание новых программных продуктов и снизило на них затраты.

В 1995 году была выпущена библиотека Direct3D от Microsoft. Вскоре Microsoft, SGI и Hewlett-Packard начали проект под названием Fahrenheit, который предусматривал создание более универсального программного интерфейса на основе Direct3D и OpenGL. Идея казалась достаточно обещающей, призванной навести порядок в области интерактивной трёхмерной графики, однако, в результате финансовых трудностей в SGI и отсутствия должной индустриальной поддержки, проект был закрыт.

OpenGL 2.0

В сентябре 2001 года 3DLabs раскрыла свое видение OpenGL 2.0. Говорили, что по сравнению с DirectX главной проблемой OpenGL является Консорциум (который и должен заниматься развитием OpenGL), в который входит большое количество компаний с различными интересами, что приводит к длительному периоду принятия новой версии спецификации. OpenGL версии 2.0 была представлена 3Dlabs в ответ на беспокойство относительно медленного и нечёткого направления развития OpenGL. 3Dlabs предложила ряд существенных дополнений к стандарту, наиболее значимым из которого было добавление к ядру OpenGL языка обработки полутонов GLSL. Это позволяет программисту заменить фиксированный конвейер OpenGL небольшими программами на специальном языке для создания различных эффектов, таких, как bump mapping, normal mapping, parallax mapping, HDR и т. д.

Однако, ещё до введения в стандарт OpenGL языка GLSL существовала возможность разрабатывать спецэффекты на языках ассемблера (расширения vertex_program, fragment_program) и Cg (NVidia C for Graphics). Многие предложенные возможности пока отсутствуют в версии OpenGL 2.0, хотя некоторые из них реализованы многими производителями в виде расширений.

OpenGL 2.1

Вышел в свет 2 июля 2006 года.

Добавлена поддержка GLSL версии 1.2

OpenGL 3.0

11 августа 2008 года Khronos Group представила новую версию спецификации OpenGL.

OpenGL 3.1

24 марта 2009 года Khronos Group анонсировала OpenGL 3.1. В новой версии произведена чистка компонентов, которые были объявлены устаревшими, но оставались в OpenGL 3.0 для сглаживания перехода на новую версию API (устаревшие компоненты возможно в дальнейшем использовать через GL_ARB_compatibility extension).

OpenGL 3.2

3 августа 2009 года Khronos Group анонсировала OpenGL 3.2. Новая версия продолжает развитие стандарта OpenGL, чтобы дать разработчикам графики кроссплатформенный доступ к передовой функциональности GPU.

OpenGL 3.3

Представлена вместе с OpenGL 4.0 11 марта 2010 года. Позволяет максимально возможно приблизиться к функциональности OpenGL 4.0 на аппаратной базе предыдущего поколения.

OpenGL 4.0

11 марта 2010 года Khronos Group представила финальный вариант спецификации OpenGL 4.0 и языка обработки полутонов GLSL 4.0. OpenGL 4.0 полностью обратно совместим со старыми расширениями OpenGL, используя режим совместимости введенный в OpenGL 3.2.

OpenGL 4.1

26 июля 2010 года, Khronos Group анонсировала спецификацию OpenGL 4.1. Спецификация включает в себя обновление GLSL до версии 4.10.

OpenGL 4.2

8 августа 2011 года Khronos Group опубликовала спецификацию OpenGL 4.2 и языка шейдеров GLSL 4.2. [Источник 3]

OpenGL 4.3

6 августа 2012 года Khronos Group опубликовала на SIGGRAPH 2012 спецификации OpenGL 4.3. Кроме новых возможностей, OpenGL 4.3 приносит поддержку нового типа шейдеров через расширение GL_ARB_compute_shader. Новая версия обратно совместима с предыдущими.

OpenGL 4.4

22 июля 2013 года Khronos Group на SIGGRAPH в Анахайм, Калифорния опубликовала спецификации OpenGL 4.4.

OpenGL 4.5

11 августа 2014 года Khronos Group на SIGGRAPH в Ванкувере, Канада опубликовала спецификации OpenGL 4.5.

OpenGL 4.6

31 июля 2017 года Khronos Group опубликовала спецификации OpenGL 4.6.

Vulkan

Основные возможности

Возможности OpenGL описывают через функции его библиотеки. Все функции можно разделить на пять категорий:

При этом OpenGL может выполнять дополнительные операции, такие как использование сплайнов для построения линий и поверхностей, удаление невидимых фрагментов изображений, работа с изображениями на уровне пикселей и т.д.

Интерфейс OpenGL

OpenGL состоит из набора библиотек. Все базовые функции хранятся в основной библиотеке, для обозначения которой в дальнейшем мы будем использовать аббревиатуру GL. Помимо основной, OpenGL включает в себя несколько дополнительных библиотек (рис. 1).

Библиотека opengl что это. Opengl1. Библиотека opengl что это фото. Библиотека opengl что это-Opengl1. картинка Библиотека opengl что это. картинка Opengl1.

Первая из них – библиотека утилит GL(GLU – GL Utility). Все функции этой библиотеки определены через базовые функции GL. В состав GLU вошла реализация более сложных функций, таких как набор популярных геометрических примитивов (куб, шар, цилиндр, диск), функции построения сплайнов, реализация дополнительных операций над матрицами и т.п.

OpenGL не включает в себя никаких специальных команд для работы с окнами или ввода информации от пользователя. Поэтому были созданы специальные переносимые библиотеки для обеспечения часто используемых функций взаимодействия с пользователем и для отображения информации с помощью оконной подсистемы. Наиболее популярной является библиотека GLUT (GL Utility Toolkit). Формально GLUT не входит в OpenGL, но включается почти во все его дистрибутивы и имеет реализации для различных платформ. GLUT предоставляет только минимально необходимый набор функций для создания OpenGL-приложения. Функционально аналогичная библиотека GLX менее популярна.

Библиотеки изображений

DevIL используется для разработчиков. Он поддерживает множество форматов изображений для чтения и записи, несколько компиляторов и ОС (Microsoft Windows, Linux, macOS). [Источник 4]

Библиотека имеет следующий синтаксис :

Пример библиотеки изображений OpenGL Orbit Camera представлен на рис. 2

Библиотека opengl что это. Opengl2. Библиотека opengl что это фото. Библиотека opengl что это-Opengl2. картинка Библиотека opengl что это. картинка Opengl2.

Импорт активов 3D-файлов

Графическая библиотека OpenGL для импорта активов (Assimp) представлена как библиотека с открытым исходным кодом для импорта разнообразных популярных трехмерных моделей. Самая последняя версия экспортирует 3d-файлы и подходит как конвертер общего назначения. Имеется несколько видов таких библиотек:

Архитектура OpenGL

Примитивы определяются набором из одной или более вершин (vertex). Вершина определяет точку, конец отрезка или угол многоугольника. С каждой вершиной ассоциируются некоторые данные (координаты, цвет, нормаль, текстурные координаты и т.д.), называемые атрибутами. В подавляющем большинстве случаев каждая вершина обрабатывается независимо от других.

С точки зрения архитектуры графическая система OpenGL является конвейером, состоящим из нескольких последовательных этапов обработки графических данных.

Команды OpenGL всегда обрабатываются в том порядке, в котором они поступают, хотя могут происходить задержки перед тем, как проявится эффект от их выполнения. В большинстве случаев OpenGL предоставляет непосредственный интерфейс, т.е. определение объекта вызывает его визуализацию в буфере кадра.

Библиотека opengl что это. Opengl3. Библиотека opengl что это фото. Библиотека opengl что это-Opengl3. картинка Библиотека opengl что это. картинка Opengl3.

OpenGL является прослойкой между аппаратурой и пользовательским уровнем, что позволяет предоставлять единый интерфейс на разных платформах, используя возможности аппаратной поддержки.

Кроме того, OpenGL можно рассматривать как конечный автомат, состояние которого определяется множеством значений специальных переменных и значениями текущей нормали, цвета, координат текстуры и других атрибутов и признаков. Вся эта информация будет использована при поступлении в графическую систему координат вершины для построения фигуры, в которую она входит. Смена состояний происходит с помощью команд, которые оформляются как вызовы функций.

Синтаксис команд

Определения команд GL находятся в файле gl.h, для включения которого нужно написать:

Для работы с библиотекой GLU нужно аналогично включить файл glu.h. Версии этих библиотек, как правило, включаются в дистрибутивы систем программирования, например Microsoft Visual C++ или Borland C++ 5.02.

В отличие от стандартных библиотек, пакет GLUT нужно инсталлировать и подключать отдельно. Подробная информация о настройке сред программирования для работы с OpenGL дана в Приложении С.

Кроме того, в имена команд входят суффиксы, несущие информацию о числе и типе передаваемых параметров. В OpenGL полное имя команды имеет вид:

Таким образом, имя состоит из нескольких частей:

Использования нескольких вариантов каждой команды можно частично избежать, применяя перегрузку функций языка C++. Но интерфейс OpenGL не рассчитан на конкретный язык программирования, и, следовательно, должен быть максимально универсален.

Типичная программа, использующая OpenGL, начинается с определения окна, в котором будет происходить отображение. Затем создается контекст (клиент) OpenGL и ассоциируется с этим окном. Далее программист может свободно использовать команды и операции OpenGL API.

Все, что делает эта программа – рисует в центре окна красный квадрат.

Источник

OpenGL — что это такое и для чего нужна такая поддержка?

Здравствуйте, дорогие читатели! Сегодня мы с вами разберем OpenGL — что это такое, для чего используется, требуется ли что то настраивать для его эксплуатации.

Библиотека opengl что это. biblioteki open gl. Библиотека opengl что это фото. Библиотека opengl что это-biblioteki open gl. картинка Библиотека opengl что это. картинка biblioteki open gl.

Что это за программа

И сразу же хочу уточнить, что это вовсе не программа в привычном понимании, не драйвер, не протокол и не служба.

OpenGL — спецификация, которой определяется программный интерфейс для написания приложений, использующих 2D и 3D графику. По сути, это инструмент, который регулирует рендеринг изображения видеокартой.

Название расшифровывается как Open Graphics Library, то есть «Открытая графическая библиотека». Открытость инструмента означает, что им может воспользоваться любой разработчик без всякой маржи и лицензионных отчислений.

Инструмент кроссплатформенный: созданные с его помощью приложения будут работать в любой среде, которые осуществляют его поддержку.

При этом работать будут одинаково все в зависимости от мощности рабочей станции. Такая реализация освобождает разработчика от необходимости писать код под каждую конкретную платформу, что позволяет полностью сосредоточиться на графической составляющей.

Основные области применения OpenGL — видеоигры, системы автоматизированного проектирования, поддержка виртуальной реальности и визуализация различных проектов. На платформе Windows главным конкурентом технологии является DirectX.

О том, что такое DirectX и зачем он нужен, вы можете почитать вот тут.

Концепция OpenGL была разработана в 1982 году в университете Стэнфорда. Аппаратно прототип технологии впервые реализовала компания Silicon Graphics, создавшая конвейер для рендеринга. Ее разработки стали основой библиотек OpenGL.

Как работает OpenGL

Если смотреть с точки зрения разработчика, то OpenGL — программный интерфейс, который управляет работой видеокарты. Всего есть чуть более 150 команд, с помощью которых программист определяет, какие именно объекты будут отправлены на рендеринг.Библиотека opengl что это. trekhmernyj obekt. Библиотека opengl что это фото. Библиотека opengl что это-trekhmernyj obekt. картинка Библиотека opengl что это. картинка trekhmernyj obekt.Этим же стандартом определяются более тонкие настройки: например, тройная буферизация, трассировка лучей или сглаживание в играх.

Нет необходимости создавать разные версии графических объектов для отображения в различных режимах качества графики: все подстраивается «на автомате», исходя из заданных программистов параметров.

Проще говоря, программист определяет отображаемые объекты в трехмерном пространстве, их взаимное положение и взаимодействие, масштабирование, угол обзора и т.д., а также цвет и текстуру, а OpenGL уже заботится об их рендеринге.

Можно утверждать, что этот инструмент только воспроизводит объекты, но не взаимодействует с устройствами ввода — мышью, клавиатурой, геймпадом или игровым рулем. За это, а также за работу менеджера окон, отвечают уже другие компоненты.

Несмотря на кажущуюся сложность, OpenGL имеет четко продуманную структуру и простой процедурный интерфейс. При этом с помощью этого инструмента можно создавать действительно сложные сцены, состоящие из множества компонентов. Вычислительных мощностей требуется меньше по сравнению с другими библиотеками.

Некоторые версии OpenGL поддерживают работу по сети: объекты рендерятся на сервере, а клиентское приложение получает только их отображение. Благодаря этому можно создавать мощные воспроизводящие комплексы, состоящие из множества компьютеров.

Следует отметить, что в отличие от главного конкурента OpenGL можно считать универсальным инструментом. Главный конкурент, DirectX, «заточен» именно под игры. Многие игры поддерживают обе технологии.

Нужно ли переключаться между ними? На мой взгляд, нет никакой разницы, что именно вы используете, Независимо от технологии существенной разницы в производительности не замечено, если речь идет о платформе Windows.

Если же вы используете эмулятор Андроид на ПК, в этом случае рекомендую переключиться OpenGL: для систем семейства Unix этот инструмент подходит больше.

Также рекомендую ознакомиться с публикациями «Что делать, если видеокарта не поддерживает DirectX» и «Как посмотреть параметры видеокарты». Буду признателен, если вы расшарите этот пост в социальных сетях. До скорой встречи!

Источник

learnopengl. Урок 1.1 — OpenGL

Библиотека opengl что это. image loader. Библиотека opengl что это фото. Библиотека opengl что это-image loader. картинка Библиотека opengl что это. картинка image loader.Здравствуйте. Несколько недель назад я начинал серию переводов статей по изучению OpenGL. Но на 4 статье один хабровчанин заметил, что мои переводы могут нарушать лицензию, по которой распространяются учебные материалы, предоставленные в исходной статье. И действительно, мои переводы нарушали лицензию. Для разрешения этой проблемы я обратился к авторам того набора уроков, но так и не смог добиться нормального ответа. По этой причине я связался с автором другого, не менее (а возможно даже и более) крутого, набора уроков по OpenGL: Joey de Vries. И он дал полное разрешение на перевод его набора уроков. Его уроки гораздо более обширные, чем прошлый набор, поэтому эти переводы растянутся на долго. И я обещаю, будет интересно. Заинтересовавшихся прошу под кат.

Также я встал на распутье: либо я опишу все основы вроде создания окна и контекста в одной статье, чтобы не плодить статьи, но в таком случае такую огромную статью не всякий осилит; либо я также как и раньше буду переводить, опираясь на иерархию оригинала. Я решил выбрать второй вариант.

На счет уроков по Vulkan: к сожалению мне тяжело сейчас написать уроки по данному API по причине скудной видеокарты на данный момент, которая просто не поддерживает Vulkan API, поэтому уроки по данному API будут только после обновления видеокарты.

Часть 1.1 — OpenGL

Вступление

Прежде чем мы начнем наше путешествие нам стоило бы разобраться что такое OpenGL. В основном под OpenGL понимают API (Интерфейс Программирования Приложений), который предоставляет большой набор функций, которые мы можем использовать для управления графикой и изображениями. Но на самом деле OpenGL это скорее спецификация, разработанная и поддерживаемая Khronos Group.

Спецификация OpenGL описывает каким будет результат выполнения каждой конкретной функции и что она должна делать. А уже реализация этих спецификаций лежит на плечах разработчиков. И поскольку спецификация не описывает детали реализации, соответственно имеют право на существование различные реализации OpenGL, по крайней мере пока они соответствуют спецификациям.

Люди, разрабатывающие OpenGL библиотеки, зачастую, являются производителями видеокарт. Каждая видеокарта, которую вы покупаете, поддерживает конкретные версии OpenGL из набора библиотек, разработанных для данной серии видеокарт. При использовании Apple системы, OpenGL библиотеки поддерживаются Apple, под Linux существуют комбинации версий от поставщиков и пользовательских адаптаций этих библиотек. Это также означает, что если используемая вами версия OpenGL показывает странное поведение, значит, с большой вероятностью — это ошибка производителей видеокарт.

Так как большинство реализаций разрабатываются производителями видеокарт, для исправления багов требуется обновить драйвера видеокарты. Это одна из причин, почему почти все уроки рекомендуют обновлять драйвера на видеокарту.

Khronos выложила в публичный доступ все спецификации для всех версий OpenGL. Заинтересовавшийся читатель может найти спецификации OpenGL 3.3 (именно эту версию OpenGL мы будем использовать) здесь. Спецификации отлично показывают правила работы всех функций.

Core-profile и Immediate mode (Мгновенный режим)

Раньше, использование OpenGL предполагало разработку в Immediate mode (также известен как фиксированный конвейер (fixed function pipeline)), которая была проста в использовании для рисования графики. Большинство функционала OpenGL было скрыто в библиотеках и у разработчиков не было свободы в понимании вычислений, производимых OpenGL.

Разработчики требовали большей гибкости в разработке и позже спецификация стала более гибкой, а разработчики получили больше контроля над процессом отрисовки их графики. Immediate mode был прост в использовании и понимании, но он был крайне неэффективным. По этой причине спецификация указала Immediate mode как устаревший, и начиная с версии 3.2 начала мотивировать программистов использовать Core-profile режим, который исключал весь устаревший функционал.

При использовании core-profile, OpenGL заставляет нас пользоваться современными практиками. Когда мы пытаемся использовать устаревшие функции, OpenGL выбрасывает ошибку и прекращает отрисовку. Преимущества использования современных практик — это гибкость и эффективность, но к сожалению бОльшая сложность в изучении. Immediate mode является бОльшей абстракцией и он скрывает большое количество реальной работы, выполняемой OpenGL и поэтому его было легко изучать, но трудно разобраться, как OpenGL на самом деле работает. Современный подход требует от разработчика полного понимания OpenGL и графического программирования в целом и хоть это немного сложнее, такая схема позволяет добиться большей гибкости, эффективности.

Это причина, почему наши уроки основаны на Core-Profile OpenGL версии 3.3.
Хоть он немного и сложнее, но это того стоит.

Сейчас уже вышли гораздо более новые версии OpenGL (на момент написания 4.5) и вы можете спросить: зачем мы должны изучать OpenGL 3.3, когда уже вышел 4.5? Ответ довольно прост. Все старшие версии OpenGL, начиная от версии 3.3 не добавляют различные полезные возможности без изменения основной механики. Новые версии просто предоставляют немного более эффективные или более удобные способы выполнения одних и тех же операций. В результате все концепты и техники, применимые к OpenGL 3.3 можно применить к новым версиям OpenGL.

Использование новейших версий OpenGL сопряжено с одной проблемой. Исполнять новейшие API смогут только современные видеокарты.

Расширения

Отличной возможностью OpenGL является поддержка расширений. В то время, когда производители видеокарт представляют новую технологию или новую обширную оптимизацию для отрисовки, в драйверах появляется расширение, относящееся к этому событию. Если аппаратное обеспечение, на котором запущено приложение, поддерживает расширение, значит разработчик может использовать функционал, предоставляемый этим расширением для более продвинутой, или эффективной отрисовки графики. Таким образом графический программист может использовать новые технологии без ожидания их реализация в новых версиях OpenGL, просто проверив поддержку технологии видеокартой. Зачастую, если какое-то расширение пользуется большим спросом, его реализуют как часть следующей версии OpenGL.

Разработчику надо лишь проверить доступность расширения (или использовать библиотеку расширения). Такой подход позволяет программисту выполнять действия более эффективно, основываясь на имеющихся у него расширениях:

C OpenGL 3.3 нам редко будут нужны расширения, но когда будут нужны, необходимые инструкции будут предоставлены.

Конечный автомат

OpenGL по своей сути — это большой конечный автомат: набор переменных, определяющий поведение OpenGL. Под состоянием OpenGL в основном имеется ввиду контекст OpenGL. В процессе использования OpenGL, мы часто изменяем состояния, устанавливая некоторых опции, управляем буферами, а затем отрисовываем, используя текущий контекст.

Когда мы говорим OpenGL, что мы хотим начать отрисовывать, к примеру, линии, вместо треугольников, то мы меняем состояние OpenGL, изменяя опцию, отвечающую за то как OpenGL должен рисовать. После изменения состояния OpenGL, на отрисовку линий, все последующие функции отрисовки будут отрисовывать линии вместо треугольников.

Во время работы с OpenGL мы будем проходить через несколько меняющих состояния функций, которые будут менять контекст, и через несколько меняющий состояния функций, выполняющие действия в зависимости от текущего состояния OpenGL. До тех пор, пока вы держите в голове тот факт, что OpenGL — это большой конечный автомат, большинство функционала будет вам понятна.

Объекты

Библиотеки OpenGL написаны на C и имеют множественные ответвления, но в основном это C библиотека. Поскольку большинство конструкций из языка C не транслируется в высокоуровневые языки OpenGL был разработан с использованием большого количества абстракций. Одной из таких абстракций является система объектов в OpenGL.

Объект в OpenGL — это набор опций, которые представляют подмножество состояний OpenGL. К примеру мы можем создать объект, описывающий конфигурацию отрисовки окна; мы можем задать размер, количество цветов и так далее. Такой объект можно представить C-подобной структурой:

Примитивные типы
Заметьте, что при использовании OpenGL рекомендуется использовать примитивы, заданные OpenGL. Вместо использования float записывать его с приставной GL. Тоже самое для int, uint char, bool и так далее. OpenGL определяет разметку памяти для его GL примитивов для обеспечения кроссплатформенности, поскольку некоторые операционные системы могут иметь иную разметку. Использования OpenGL примитивов позволяет добиться полной кроссплатформенности вашего приложения.

Каждый раз, когда мы хотим использовать объекты в основном мы запишем это как-то так:

Этот небольшой участок кода — то, что вы будете часто встречать во время работы с OpenGL. В начале мы создаем объект и сохраняем ссылку на него в виде идентификационного номера (id). (Реальные данные объекта спрятаны в реализации). Затем мы привязываем объект к требуемой части контекста (Расположение целевого объекта окна из примера задано, как `GL_WINDOW_TARGET`). Затем мы устанавливаем значения опций окна и, в конце концов, отвязываем объект, установив id в 0. Значения, установленные нами продолжают храниться в объекте, доступ к которому мы можем получить через objectId и восстановить их снова привязав объект к GL_WINDOW_TARGET.

Данный код лишь показывает пример того, как работает OpenGL. В последствии будут представлены реальные примеры.

Основная фишка этих объектов состоит в том, что мы можем объявлять множество объектов в нашем приложении, задавать их опции и когда бы мы не запускали операции с использованием состояния OpenGL мы можем просто привязать объект с нашими предпочитаемыми настройками. К примеру этом могут быть объекты с данными 3D модели или нечто, что мы хотим на этой модели отрисовать. Владение несколькими объектами позволяет просто переключаться между ними в процессе отрисовки.

Давайте начнем

Теперь вы немного узнали про OpenGL как о спецификации, так и о библиотеке. Узнали примерный алгоритм работы и несколько особенностей, используемых OpenGL. Не расстраивайтесь, если что-то недопоняли, далее мы пошагово пройдемся по всем этапам и вы увидите достаточно примеров, чтобы разобраться во всех хитросплетениях OpenGL. Если вы уже готовы начать — то мы можем начать создавать OpenGL контекст и наше первое окно прямо тут.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *