Бга чип что это
Пайка bga
Пайка bga микросхем
Как паять платы? И как расшифровывается BGA? На эти два часто задаваемых вопроса, во время прохождения курсов пайки, отвечают мастера Bgacenter. От английского – ball grid arrey, то есть массив шариков, своим видом похожий на сетку. Шарики из припоя наносятся на микросхему через трафарет, затем потоком горячего воздуха, расплавляется сам припой и формируются контакты правильной формы.
А процесс пайки состоит из определенной последовательности действий, соблюдая которую получаем качественное соединение. Но существует большое количество нюансов, ради которых и приезжают на обучение.
Начиная с того под каким углом и на каком расстоянии от платы держать сопло фена, температурные режимы демонтажа и монтажа микросхем, с какой стороны заводить лопатку. А при проведении диагностики, и наличии межслойного короткого замыкания ничего не нагревается.
Как в этом случае найти неисправный элемент или цепь? И много других тонкостей которые может знать действующий мастер сервисного центра. И тот кто может подтвердить свой уровень выполненными ремонтами.
Ремонт iPhone в Bgacenter
Выпаивание чипа
90 % успешности ремонта зависит от правильно выполненного демонтажа микросхем. Именно на этом этапе важно не оторвать пятаки и не повредить микросхему высокой температурой. А начинают выпаивание чипа, с удаления компаунда.
Компаунд
Компаунд – полимерная смола, обычно черного или коричневого цвета, применяемая при изготовлении системных плат телефонов. Назначение компаунда:
Наиболее ответственные микросхемы, такие как: CPU, BB_RF, EPROM, NAND Flash, Wi-Fi в заводских условиях после установки, заливаются компаундом. И перед тем как выполнять демонтаж, необходимо очистить периметр от смолы.
Последовательность демонтажа
Пайка bga чипов
Общий принцип пайки следующий, благодаря создаваемому поверхностному натяжению при расплавлении припоя, происходит фиксация микросхемы относительно контактной площадки на системной плате. Температура пайки bga микросхем на платах iPhone 320 – 350 градусов Цельсия.
Нижний подогрев для пайки bga
Для уменьшения времени воздействия на плату высоких температур используется подогревать плат. Рекомендуем моноблочный подогреватель печатных плат СТМ 10-6. Стабильное поддержание заданной температуры на всей площади нагревательного элемента способствует равномерному прогреву всей motherboard (зависит от модели подогревателя). И ещё одно из преимуществ перед другими термостолами, это удобная универсальная система креплений.
Флюс для пайки bga
На маркете представлено огромное количество производителей флюсов. В Bgacenter применяется широко распространенный FluxPlus. Следует обращать внимание на дату изготовления и срок годности флюса. Преимущества флюс-геля:
Термовоздушная паяльная станция
Назначение станции Quick 861DE ESD Lead – пайка (демонтаж и монтаж) BGA микросхем и SMD компонентов. Преимущества этой станции:
Что бы можно улучшить в конструкции станции, это регулировка температуры не кнопками, а вращающимися регуляторами, как на Quick 857D (W)+.
Quick 861DE ESD Lead
Паяльник для пайки
PS-900 METCAL – индукционная паяльная система. Мощности паяльника 60 Вт вполне достаточно для работы с многослойными платами современной электроники. Опыт работы инженеров по ремонту телефонов именно с этим паяльником – 4 года. Какие отличительные особенности у PS-900:
Паяльник для пайки
Микроскоп бинокулярный
Для начинающего мастера по ремонту телефонов хорошим вариантом будет микроскоп СМ0745. Бинокулярный микроскоп с фокусным расстоянием 145 мм (при установке рассеивающей линзы Барлоу). Назначение системы линз, увеличение фокусного расстояния при сохранении рабочей зоны.
Микроскоп для пайки плат
Шарики bga
Для пайки плат iPhone в основном применяются шарики припоя диаметр 0,2 мм. Обычно поставляются в стеклянной таре, по 10000 шаров в каждой банке.
Состав шариков из припоя:
Качество пайки
После выполнения паяльных работ необходимо убедиться, что пайка bga выполнена качественно. Контроль осуществляется несколькими способами:
Подробно о методиках проверки, читайте в следующем материале. Например при диагностике цепи заряда iPad Air, подключением платы к ЛБП, при исправном TRISTAR потребление тока должно быть не более 0,07 Ампер.
Как перепаять BGA микросхему
Что такое BGA микросхема?
BGA (Ball Grid Array) — матрица из шариков. То есть это тип микросхем, которые вместо выводов имеют припойные шарики. Этих шариков на микросхеме могут быть тысячи!
В наше время микросхемы BGA применяются в микроэлектронике. Их часто можно увидеть на платах мобильных телефонов, ноутбуков, а также в других миниатюрных и сложных устройствах.
Как перепаять BGA микросхему
В ремонтах телефонов бывает очень много различных поломок, связанных именно с микросхемами. Эти BGA микросхемы могут отвечать за какие-либо определенные функции в телефоне. Например, одна микросхема может отвечать за питание, другая — за блютуз, третья — за сеть и тд. Иногда, при падении телефона, шарики микросхемы BGA отходят от платы телефона и у нас получается, что цепь разорвана, следовательно — телефон теряет некоторые функции. Для того, чтобы поправить это дело, ремонтники или прогревают микросхему, чтобы припойный шарик расплавился и опять «схватился» с контактной площадкой на плате телефона или полностью демонтируют микросхему и «накатывают» новые шарики с помощью трафарета. Процесс накатывания шаров на микросхему BGA называется реболлинг. На российских просторах этот термин не прижился и у нас это называют просто «перекаткой».
Подопытным кроликом у нас будет плата мобильного телефона.
Для того, чтобы легче было отпаивать «вот эти черные квадратики» на плате, мы воспользуемся инфракрасным преднагревателем или в народе «нижним подогревом». Ставим на нем температуру 200 градусов по Цельсию и идем пить чай. После 5-7 минут приступаем парировать нашего пациента.
Остановимся на BGA микросхеме, которая попроще.
Теперь нам надо подготовить инструменты и химию для пайки. Нам никак не обойтись без трафаретов для различных BGA микросхем. Те, кто серьезно занимается ремонтами телефонов и компьютерной техники, знают, насколько это важная вещь. На фото ниже предоставлен весь набор трафаретов для мастера по ремонту мобильных телефонов.
Трафареты используются для «накатывания» новых шаров на подготовленные BGA микросхемы. Есть универсальные трафареты, то есть под любые BGA микросхемы. А есть также и специализированные трафареты под каждую микросхему. В самом верху на фото мы видим специализированные трафареты. Внизу слева — универсальные. Если правильно подобрать шаг на микросхеме, то можно спокойно накатать шары на любой из них.
Для того, чтобы сделать реболлинг BGA микросхемы, нам нужны также вот такие простые инструменты и расходные материалы:
Здесь всем вам знакомый Flux-off. Подробнее про него и другую химию можно прочесть в статье Химия для электронщика. Flus Plus, паяльная паста Solder Plus (серая масса в шприце с синим колпачком) считается самой лучшей паяльной пастой в отличие от других паст. Шарики с ней получаются как заводские. Цена на такую пасту дорогая, но она того стоит. Ну, и конечно, среди всего прочего барахла есть также ценники (покупайте, чтобы они были очень липкие) и простая зубная щетка. Все эти инструменты нам понадобятся, чтобы сделать реболлинг простой BGA микросхеме.
Для того, чтобы не спалить элементы, расположенные рядом, мы их закроем термоскотчем.
Смазываем обильно микросхему по периметру флюсом FlusPlus
И начинаем прогревать феном по всей площади нашу BGA
Вот здесь и наступает самый ответственный момент при отпаивании такой микросхемы. Старайтесь греть на воздушном потоке чуть меньше среднего значения. Температуру повышайте буквально по пару градусов. Не отпаивается? Добавьте немного жару, и главное НЕ ТОРОПИТЕСЬ! Минута, две, три… не отпаивается… добавляем жару.
Некоторые ремонтники любят трепаться «хахаха, я отпаиваю BGАшку за считанные секунды!». Отпаивают то они отпаивают, но при этом не понимают, какой стресс получает отпаиваемый элемент и печатная плата, не говоря уже о близлежащих элементах. Повторю еще раз, НЕ ТОРОПИТЕСЬ, ТРЕНИРУЙТЕСЬ НА ТРУПАХ. НЕ ТОРОПИТЕСЬ срывать не отпаянную микросхему, это вам выйдет боком, потому как оборвете все пятаки под микросхемой! Пользуйтесь специальными устройствами для поднятия микросхем. Их я находил на Али по этой ссылке.
И вот мы греем феном нашу микросхему
и заодно проверяем ее с помощью экстрактора для микросхем. Про него я писал еще в этой статье.
Готовая к поднятию микросхема должна «плавать» на расплавленных шариках, ну скажем… как кусочек мяса на холодце. Притрагиваемся легонько к микросхеме. Если она двигается и опять становится на свое место, то аккуратненько ее поднимаем с помощью усиков (на фото выше), Если же у вас такого устройства нет, то можно и пинцетом. Но будьте предельно осторожны! Не прикладывайте силу!
В настоящее время существуют также вакуумные пинцеты для микросхем такого рода. Есть ручные вакуумные пинцеты, принцип действия у которых такой же, как и у Оловоотсоса
а есть также и электрические
У меня был ручной пинцет. Честно говоря, та еще какашка. Закоренелые ремонтники используют электрический вакуумник. Стоит только приблизить такой пинцет к микросхеме BGA, которая уже «плавает» на расплавленных шариках припоя, как он тут же ее подхватывает своей липучкой.
По отзывам, электрический вакуумный пинцет очень удобен, но мне все-таки не довелось его использовать. Короче говоря, если надумаете, то берите электрический.
Но, вернемся все-таки к нашей микросхеме. Крохотным толчком я убеждаюсь, что шарики действительно расплавились, и плавным движением вверх переворачиваю BGA микросхему. Если рядом много элементов, то идеально было бы использовать вакуумный электрический пинцет или пинцет с загнутыми губками.
Ура, мы сделали это! Теперь будем тренироваться запаивать ее обратно :-).
Вот и начинается самый сложный процесс — процесс накатывания шариков и запаивания микросхемы обратно. Если вы не забыли — это называется перекаткой. Для этого мы должны подготовить место на печатной плате. Убрать оттуда весь припой, что там остался. Смазываем все это дело флюсом:
и начинаем убирать оттуда весь припой с помощью старой доброй медной оплетки. Я бы посоветовал марку Goot wick. Эта медная оплетка себя очень хорошо зарекомендовала.
Если расстояние между шариками очень малое, то используют медную оплетку. Если расстояние большое, то некоторые ремонтники не прибегают к медной оплетке, а берут жирную каплю припоя и с помощью этой капельки собирают весь припой с пятачков. Процесс снятия припоя с пятачков BGA — очень тонкий процесс. Лучше всего на градусов 10-15 увеличить температуру жала паяльника. Бывает и такое, что медная оплетка не успевает прогреться и вырывает за собой пятачки. Будьте очень осторожны.
Дальше прыскаем туда Flux-off, чтобы очистить от нагара и лишнего флюса наше место под микросхему
и зашкуриваем с помощью простой зубной щетки, а еще лучше ватной палочкой, смоченной в Flux-Off.
Получилось как то так:
Если присмотреться, то видно, что некоторые пятачки я все таки оборвал (внизу микросхемы черные круги, вместо оловянных) Но! Не стоит расстраиваться, они, как говорится, холостые. То есть они не никак электрически не связаны с платой телефона и делаются просто для надежности крепления микросхемы.
Далее берем нашу BGAшку и убираем все лишние припойные шарики. В результате она должны выглядеть вот так:
И вот начинается самое интересный и сложный процесс — накатывание шаров на микросхему BGA. Кладем подготовленную микросхему на ценник:
Находим трафарет с таким же шагом шаров и закрепляем с помощью ценника микросхему снизу трафарета. Втираем в отверстия трафарета с помощью пальца паяльную пасту Solder Plus. Должно получиться как-то вот так:
Держим с помощью пинцета одной рукой пинцет, а в другой фен и начинаем жарить на температуре примерно 320 градусов на очень маленьком потоке всю площадь, где мы втирали пасту. У меня не получилось сразу в двух руках держать и фотоаппарат и фен и пинцет, поэтому фотографий получилось маловато.
Снимаем готовую микросхему с трафарета и смазываем чуть флюсом. Далее пригреваем феном до расплавления шаров. Это нам нужно, чтобы шарики ровнёхонько стали на свои места.
Смотрим, что у нас получилось в результате:
Блин, чуточку коряво. Одни шарики чуть больше, другие чуть меньше. Но все равно, это нисколько не помешает при запайке этой микросхемы обратно на плату.
Чуточку смазываем пятаки флюсом и ставим микросхему на родное место. Выравниваем края микросхемы с двух сторон по меткам. На фото ниже только одна метка. Другая метка напротив нее по диагонали.
И на очень маленьком воздушном потоке фена с температурой 350-360 градусов запаиваем нашу микрушку. При правильной запайке она должна сама нормально сесть по меткам, даже если мы чуток перекосили.
Где ключ у BGA микросхемы
Ну вот, если вы забыли, как стояла микросхема на плате телефона, то ищем схему на телефон (в интернете их пруд пруди), в данном случае Nokia 3110С, и смотрим расположение элементов.
Опаньки! Вот теперь мы узнали, в какую сторону должен быть расположен ключик!
Кому лень покупать паяльную пасту (стоит она очень дорого), то проще будет приобрести готовые шарики и вставлять их в отверстия трафарета BGA.
На Али я их находил целым набором, например здесь.
Заключение
Будущее электроники за BGA микросхемами. Очень большую популярность также набирает технология microBGA, где расстояние между выводами еще меньше! Такие микросхемы перепаивать уже возьмется не каждый). В сфере ремонта будущее за модульным ремонтом. В основном сейчас все сводится к покупке какого-либо отдельного модуля, либо целого устройства. Не зря же смартфоны делают монолитными, где и дисплей и тачскрин уже идут в одной связке. Некоторые микросхемы, да и вообще целые платы заливают компаундом, который ставит на «нет» замену радиоэлементов и микросхем.
Почему происходит отвал графического процессора и чипов памяти у видеокарты
Содержание
Содержание
Давайте разберемся, почему в последние годы видеокарты часто выходят из строя из-за отвала графического процессора или чипов памяти и как этого избежать. А также затронем важный для многих вопрос — что сильнее изнашивает видеокарту: майнинг или игры?
Наверняка вы видели в интернете фотографии цветных «артефактов» на экране монитора, они появляются, если у видеокарты произошел отвал графического процессора или чипа памяти. «Артефакты» — не единственный признак. Отвал чипов может сопровождаться черным экраном при включении ПК, невозможностью установить драйвера на видеокарту и ошибкой 43 в Windows, указывающей на системные сбои, связанные с графическим адаптером.
Особенно часто проблемы появляются у видеокарт, выпущенных в конце 2000-х годов и позже, а наиболее сильно от отвалов пострадали видеокарты серий Nvidia GeForce семейств 8X00, 2XX, 4XX и 5XX. Многие из этих моделей не дожили до наших времен в рабочем состоянии, часто они продаются на вторичном рынке после кустарного ремонта методом прогрева, но он помогает ненадолго.
GeForce 8800 GTX были рекордсменами по отвалам чипов
Что такое BGA и почему происходит отвал чипов?
Чтобы понять, что такое отвал чипов и по каким причинам он происходит, сначала надо разобраться в способах крепления микросхем к текстолиту видеокарты. В 1990-х годах видеочипы имели совсем немного выводов, для них вполне хватало корпуса DIP (от англ. dual in-line package), выводы которого располагаются по краям микросхемы, или корпусов QFP (от англ. Quad Flat Package), где выводы были с четырех сторон.
Даже таким сложным видеочипам 1990-х годов, как 3dfx Voodoo II, хватало корпусов QFP
В 2000-х годах сложность графических процессоров и их энергопотребление начали быстро расти, количество выводов достигло сотен штук и более, что сделало невозможным их исполнение в корпусах QFP. Выходом стал тип корпуса микросхем BGA (от англ. Ball grid array — «массив шариков»), в котором контакт обеспечивается с помощью шариков припоя, расположенных с обратной стороны микросхемы. Росло количество выводов и у микросхем видеопамяти, которая после недолгого существования в корпусах TSOP (от англ. Thin Small-Outline Package), тоже перешла в корпуса BGA.
Видеочип GeForce 4 Ti 4200 уже использует корпус BGA, а видеопамять пока еще обходится корпусом TSOP
BGA решил проблему миниатюризации чипов с большим количеством выводов, но в отличие от корпусов DIP, QFP и TSOP, выводы чипа в виде шариков припоя не являются гибкими. При многократном сильном нагреве с последующим резким остыванием в них возникают микротрещины и окислы, постепенно приводящие к так называемому «отвалу» чипа, когда один или несколько шариков теряют контакт.
Контакт шариков может нарушиться и при физическом воздействии на текстолит или чип, например, при неаккуратной установке видеокарты в ПК. А также при демонтаже ее системы охлаждения, провисании в слоте под собственным весом или при сильной и продолжительной вибрации.
Из-за этого корпуса чипов BGA считаются ненадежными и редко применяются в тех отраслях электроники, где требуется безотказная работа, несмотря на перепады температур или вибрации, например, в военной технике или авиастроении. Ситуация с ненадежностью корпусов BGA усугубилась во второй половине 2000-х годов, когда при изготовлении бытовой электроники и видеокарт в частности, производители окончательно перешли на применение экологичных бессвинцовых припоев.
Бессвинцовые припои отличаются более высокой температурой плавления и более высокой твердостью получающихся шариков, используемых в качестве контактов чипа. Если более мягкий припой с содержанием свинца обеспечивал некоторую пластичность пайки, то с бессвинцовыми припоями контакты BGA-чипов стали еще больше подвержены как механическим, так и термическим повреждениям.
В те годы на форумах активно шли дискуссии пользователей, занимающихся ремонтом электроники. Они предполагали, что с помощью бессвинцовых припоев производители в первую очередь решили вопрос запланированного устаревания устройств. Что неудивительно, ведь после видеокарт и материнских плат 1990-х годов, работающих по 5-10 лет, пользователи начали сталкиваться с отвалами чипов уже через пару-тройку лет работы устройства.
Можно ли отремонтировать отвал чипов?
Отвалы чипов дали целое направление кустарному способу ремонта, который называли «прогрев» или «прожарка»: пользователи нагревали видеокарту разными способами — от духовки и утюга до строительного фена. Обычно такой «ремонт» помогал, но очень ненадолго. Уже через пару месяцев пользователь опять сталкивался с отвалом чипа и артефактами видеокарты.
Дело в том, что шарики припоя расположены не только под подложкой чипа, которой он крепится к текстолиту видеокарты, но и между чипом и подложкой, где их размер намного меньше. И чаще всего отвал и нарушение контактов шариков припоя происходили именно между чипом и подложкой.
Опытные мастера, занимающиеся ремонтом компьютерной техники, могут починить отвал между текстолитом видеокарты и подложкой чипа, сделав так называемый «реболл» — шарики припоя заменяют на новые с помощью специальных трафаретов и последующей пайки.
Но отвал шариков между подложкой и чипом практически неремонтопригоден. В этом случае поможет только пересадка рабочего чипа, например, с видеокарты «донора». Ремонт отвала чипа видеопамяти тоже производится с помощью «реболла» с использованием рабочего чипа.
Что вызывает отвал чипов при обычном использовании видеокарты?
Давайте представим обычный сценарий использования игровой видеокарты. При включении ПК графический процессор видеокарты разогревается с комнатных 20-25 градусов до 35-45 градусов в режиме простоя. В случае использования функции «FAN STOP», которую в наше время все чаще применяют производители, видеокарта в простое может разогреваться и до 50-60 градусов. Это зависит от качества ее системы охлаждения и эффективности вентиляции в корпусе.
«FAN STOP» не только снижает шум и износ вентиляторов, но и уменьшает количество пыли на видеокарте
При запуске игры температура видеопроцессора обычно поднимается до 65-85 градусов — опять же в зависимости от эффективности охлаждения видеокарты и корпуса ПК. Но температура постоянно скачет при снижении нагрузки на видеокарту, например, при входе в инвентарь, загрузке уровня или проигрывании кат-сцены.
То есть на шарики припоя BGA-чипа постоянно действует перепад температур, вызывающий их расширение и сжатие. А при частом свертывании игры в трей и развертывании ее обратно перепады температуры могут составить и до 40-50 градусов, что еще сильнее бьет по шарикам припоя. За несколько часов игры может быть несколько сотен подобных циклов нагрева и остывания.
Почему чипы видеопамяти уязвимы для отвала?
Указанные выше температуры нормальны для видеопроцессора, их мы обычно видим в мониторинге таких программ, как MSI Afterburner или HWiNFO. А вот температуру чипов видеопамяти зачастую не мониторят на видеокартах бюджетного и среднего сегмента, хотя их нагрев может достигать гораздо более высоких значений, чем у видеопроцессора.
Ситуацию усугубляет то, что производители часто не уделяют охлаждению видеопамяти должного внимания, сосредотачиваясь на охлаждении видеопроцессора. В результате мы получаем видеокарту с холодным видеопроцессором, нуждающимся в небольшом потоке воздуха для охлаждения, но с видеопамятью, которой этого потока для должного охлаждения не хватает.
Яркий пример таких видеокарт — ASUS GeForce GTX 1060 Strix с массивной и избыточной СО на видеочипе, и маленькой пластиной, которая должна охлаждать видеопамять, но даже не накрывает все чипы.
Тем не менее, дорогая видеокарта с массивной системой охлаждения, в которой охлаждаются и чипы памяти — еще не гарантия низких температур. Очень высокие температуры чипов видеопамяти GDDR6X были зафиксированы пользователями на видеокартах GeForce RTX 3080 и RTX 3090. Температуры доходят до 102 градусов в играх, и до 110 при майнинге Ethereum, а при превышении рабочей температуры памяти в 100 градусов уже начинается троттлинг со сбросом частот.
Почему майнинг считается более безопасным в плане отвала чипов видеокарты?
В отличие от скачущей игровой нагрузки, в майнинге видеокарты круглосуточно работают при практически одинаковых нагрузках и температурах. Это более щадящие условия для шариков припоя на чипах BGA. Температуры видеокарт в открытых фермах обычно ниже, чем в игровых ПК, а дополнительным фактором их снижения является частое использование майнерами андервольта для экономии электроэнергии.
Но не стоит думать, что после пары лет майнинга видеокарта будет как новенькая. После длительного майнинга обычным делом для видеокарт является износ вентиляторов СО, а также деградация чипов памяти за счет эффекта электромиграции.
Как продлить жизнь видеокарте и минимизировать риск отвала чипов?
Видеокарты в наше время стали настоящим сокровищем, очень важно позаботиться о комфортных условиях работы для них. Чтобы минимизировать риск отвала чипов, надо в первую очередь уменьшить перепад температур между состоянием простоя видеокарты и режимом максимальной нагрузки в играх. Добиться этого можно несколькими способами, одним из них является ручная настройка работы вентиляторов, например, через утилиту MSI Afterburner.
Но даже видеокарта с качественной системой охлаждения может перегреваться в тесном корпусе с плохой вентиляцией. Оптимальным выбором на сегодня являются корпуса с двумя-тремя вентиляторами на вдув и на выдув. Такое количество вентиляторов создаст отличную продуваемость в корпусе и сохранит комфортный уровень шума при установке малооборотистых вентиляторов.
В отличие от остальных комплектующих, цены на корпуса за последний год практически не росли: хорошую в плане вентиляции модель можно купить по цене от 3000-4000 рублей.
Очень важно регулярно чистить видеокарту от пыли, желательно использовать корпус с качественными съемными пылевыми фильтрами — тогда запыление комплектующих внутри будет минимальным. Это поможет соблюсти нормальный температурный режим.
Очень легко повредить видеокарту при установке или извлечении из ПК. Начинающим пользователям надо совершать эти манипуляции крайне осторожно и при хорошем освещении. Недопустимо применять чрезмерную силу или надавливать только на систему охлаждения — это вызовет перекос видеокарты.
Массивные и длинные видеокарты могут провисать под своим весом, что чревато изгибом текстолита и может вызвать отвал чипов. В этом случае помогут специальные подставки под видеокарту, принимающие на себя ее вес.
Выводы
Может показаться, что видеокарты очень ненадежны и отвал чипов со временем неминуем, однако на практике все не так однозначно и сильно зависит от серии видеокарт и каждого конкретного случая. Если такие серии видеокарт, как Nvidia 8X00, были рекордсменами по отвалам, то их конкуренты, довольно горячие ATI Radeon HD 48X0, оказались гораздо более надежными.
Довольно редко отвалы чипов встречаются в поколении видеокарт Nvidia Pascal, которые существуют на рынке уже пять лет и пережили майнинг-бум 2017-2018 годов. Дополнительно подстраховаться от отвала чипов можно, выбрав видеокарту с хорошей системой охлаждения и приличным сроком гарантии, а затем обеспечить ей комфортные условия работы.