Бенфотиамин или тиамин в чем разница
Есть ли разница между витамином В1- бенфотиамином и витамином В1 – тиамином?
Недостаток витамина B1 в организме может привести к гиповитаминозу, который проявляется в виде депрессии, повышенной утомляемости, плохой памяти, снижения аппетита, онемения рук и ног.
Дефицит витамина В1 может вызвать полинейропатию, причина которой – повреждение волокон периферических нервов, а также повреждение вегетативной нервной системы. Тиамин – растворимый в воде витамин В1. Бенфотиамин – жирорастворимый витамин В1. Витамин В1-бенфотиамин отличается следующими преимуществами:
1. Благодаря липофильной структуре, бенфотиамин всасывается быстрее, лучше и в большем объёме.
2. В большом объеме бенфотиамин прекращается в кокарбоксилазу – вспомогательный фермент, который активизирует обмен веществ, улучшает усвоение глюкозы, а также нормализует функционирование сердечно-сосудистой системы.
3. Даже после приема слишком большой дозы бенфотиамина аллергических реакций не наблюдается.
4. Бенфотиамин не замедляет перистальтику кишечника, напротив, он действует немного возбуждающе на гладкую мускулатуру и не вызывает запоров.
5. Бенфотиамин не имеет вкуса и запаха, поэтому при его использовании не остается типичного неприятного аромата, который можно чувствовать после приема растворимого в воде витамина В1.
Хемореактомный анализ молекул тиамина дисульфида, тиамина гидрохлорида и бенфотиамина
Опубликовано в журнале:
« Неврология, нейропсихиатрия, психосоматика. » 2017; 9(2):50-57.
Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules
Проведенный нами ранее анализ показал, что взаимодействие тиамина (в виде кофактора тиамина пирофосфата) со специфическими белками человека характеризуется четырьмя основными направлениями: энергетический метаболизм клетки и синтез АТФ (митохондрия, митохондриальная α-кетоглутарат дегидрогеназа, цикл Кребса, пируватдегидрогеназа, оксоглутарат дегидрогеназа, связывание иона магния); метаболизм углеводов (глюкозы, транскетолазы, гликолиз), жиров (α-окисление жирных кислот), аминокислот (катаболизм аминокислот с разветвленной цепью); кроветворение (транспортер фолатов, дифференцировка клеток при гемопоэзе); нейробиологические роли (активация синтеза миелиновой оболочки, активация сигнального пути рецептора аденозина, метаболизм аденозина, развитие пирамидальных нейронов, таламуса, гиппокампа, стриатума, коры мозжечка) [2].
Для восполнения потребности в витамине B1 используются собственно тиамин и такие его синтезированные производные, как тиамина гидрохлорид, пиритиамин, ацетилтиамин, ацефуртиамин, беклотиамин, фурсултиамин, сульбутиамин, бенфотиамин, винтиамол, тиамина дисульфид и др. Данные формы витамина Bi отличаются как по биодоступности и устойчивости, так и по накоплению в различных тканях, жидкостях организма, проникновению через гематоэнцефалический барьер, скорости преобразования в коферментную форму. Такие формы тиамина, как тиамина гидрохлорид, тиамина дисульфид, пиритиамин, при пероральном применении интенсивнее накапливаются в тканях мозга в отличие от бенфотиамина [3]. Бенфотиамин, наоборот, более интенсивно накапливается в крови и печени [4].
B какой бы форме витамин B1 не поступал в организм, биологическое действие осуществляется, в конечном счете, именно молекулой тиамина и его фосфат-производных (прежде всего тиамина пирофосфата). Однако следует отметить, что взаимодействие тиамина пирофосфата в качестве кофактора с белками является далеко не единственным способом реализации нейробиологических эффектов тиамина и его производных. Молекулы тиамина дисульфида, тиамина гидрохлорида и бенфотиамина также могут взаимодействовать с другими белками человека, которые не нуждаются в тиамин-пирофосфатном кофакторе.
Анализ фармакологических «возможностей» тиамина дисульфида и молекул сравнения проведен на основе хемоинформационного подхода 7, т. е. сравнения химической структуры молекул со структурами миллионов других молекул, свойства которых известны [10].
Результаты и обсуждение. С помощью хемоинформационного анализа были проведены сравнения химической структуры тиамина дисульфида с молекулами в базе данных метаболома человека (Human Metabolome Database, HMDB) и с молекулами в базах данных лекарственных средств. B качестве модели метаболома человека использовались более 40 000 соединений, приведенных в HMDB [11].
Анализ схожих с тиамина дисульфидом молекул показал, что за исключением тиамина и простых производных тиамина (тиамина фосфат, тиамина пирофосфат, тиамина нитрат и др.) все остальные известные молекулы метаболома человека находились на весьма значительном «химическом расстоянии» (dχ) от молекулы тиамина дисульфида ( > 0,5) и от молекулы бенфотиамина ( > 0,6). Таким образом, с точки зрения структуры молекул в метаболоме человека тиамина дисульфид, тиамина гидрохлорид и бенфотиамин являются «уникальными» молекулами.
Результаты хемореактомного моделирования свойств молекулы тиамина дисульфида и бенфотиамина
Хемореактомное моделирование показало, что тиамина дисульфид может взаимодействовать с рядом молекулярных рецепторов, вовлеченных в регуляцию артериального давления (АД): адренорецепторами, рецепторами вазопрессина, ангиотензина (табл. 1). Константа ингибирования (Ki), например, рецепторов вазопрессина Vu человека составила 96 нМ для тиамина дисульфида и 885 нМ для бенфотиамина, что соответствует более высокому (в 9 раз, или 885:96) сродству тиамина дисульфида к данной разновидности рецепторов по сравнению с бенфотиамином. Результаты моделирования связывания тиамина дисульфида указанными рецепторами подтверждаются результатами моделирования его экспериментальных эффектов: ингибирование накопления норадреналина в срезах мозга мышей, снижение АД у крыс (на 1,9 мм рт. ст.) и кошек (на 13 мм рт. ст.).
Данные клинических и экспериментальных исследований показывают, что дефицит тиамина стимулирует развитие гипертензии легочной артерии [12]. В частности, исследование 12 пациентов с глюкозотолерантностью показало, что прием гипердоз тиамина (300 мг/сут, 6 нед) сопровождался достоверным снижением диастолического АД (с 71,4±7,4 до 67,9±5,8 мм рт. ст.; p=0,005) и тенденцией к снижению систолического АД (с 120,7±15,3 до 116,5±11,0; p=0,06) [13].
Таблица 1. Эффекты тиамина дисульфида в отношении различных типов рецепторов нейротрансмиттеров (по данным хемореактомного моделирования)
По данным экспериментальных исследований, дефицит тиамина в организме ассоциирован с повышением судорожной готовности ЦНС [14]. Данный эффект связан, в частности, с поражением тканей мозга, возникающим при экспериментальном воспроизведении дефицита тиамина [15], что приводит не только к повышению судорожной готовности ЦНС, но и к тяжелым нарушениям обучения [16], в частности у детей [17].
Известно, что избыточная экспрессия и, следовательно, активность глутаматного рецептора mGluR5 ассоциирована с усилением отложения ß-амилоида в экспериментальной модели болезни Альцгеймера (БА) [18]. При дефиците тиамина происходит повышение уровня внеклеточного глутамата [19, 20], что усиливает повреждение нервной ткани у пациентов. При дефиците тиамина также снижается выработка ацетилхолина в мозге [21], что ускоряет нейродегенеративные изменения при деменциях.
Данные экспериментальных исследований подтверждают провоспалительное влияние дефицита витамина В1 и, наоборот, существование противовоспалительных эффектов тиамина. В модели сепсиса, воспроизведенного посредством повреждения слепой кишки, уровни ФНОα и белка-аттрактанта моноцитов (MCP-1) в перитонеальной жидкости были достоверно выше при дефиците тиамина [22]. Исследования на моделях отека и гранулемы позволили установить дозозависимый противовоспалительный и обезболивающий эффект тиамина в дозах 50, 100 и 125 мг/кг [23].
Таблица 2. Эффекты тиамина дисульфида в отношении показателей липидного профиля крови (по данным хемореактомного моделирования)
Экспериментальные данные показывают, что высокие дозы тиамина противодействуют дислипидемии, возникающей в стрептозотоциновой модели сахарного диабета (СД) [24]. Дотация тиамина в экспериментах на модели СД способствует достоверному снижению уровня триглицеридов, холестерина и холестерина липопротеинов высокой плотности [25]. Клиническое исследование с участием пациентов с СД 2-го типа (n=60) показало, что прием тиамина в дозе 100 мг/сут в течение 6 мес приводил к достоверному снижению уровня общего холестерина (p=0,03) [26].
Результаты хемореактомного моделирования выявили противоопухолевые эффекты тиамина дисульфида (табл. 3). Установлено, что тиамина дисульфид может намного эффективнее, чем бенфотиамин, ингибировать рост клеток PC3 рака простаты (на 13,92% против 5,39%), клеток KG1 острого миелолейкоза человека (на 21,37% против 7,56%), аденокарциномы поджелудочной железы 03Т/С (на 21,75% против 9,33%).
Результаты экспериментальных исследований позволяют предположить, что тиамина дисульфид, тиамина гидрохлорид и бенфотиамин могут характеризоваться противоопухолевыми эффектами. Пероральный прием тиамина в эксперименте тормозил развитие гепатоцеллюлярной карциномы [27]. Показана противоопухолевая активность бенфотиамина на клетках лейкемии [28]. Однако имеющиеся экспериментальные данные весьма фрагментарны и разрозненны, что не позволяет сделать обоснованные выводы о сравнительной противоопухолевой эффективности тиамина гидрохлорида, тиамина дисульфида и бенфотиамина. Тиамин может активировать цитохром Р450 3А7 и 7А1, что важно для метаболизма холестерина, стероидов и лекарств. Активация тиамина дисульфидом глутамиламинопептидазы способствует ускоренной деградирации вазоконстрикторного ангиотензина II. Активация мускаринового рецептора ацетилхолина М1 соответствует ноотропному эффекту тиамина дисульфида. Ингибирование тиамина дисульфидом белка SOCS3 будет улучшать внутриклеточную передачу сигнала от рецепторов эритропоэтина, инсулина, лептина. Ингибирование бенфотиамином лейкотриенового рецептора LTB4R может проявляться противовоспалительным эффектом.
Таблица 3. Противоопухолевые эффекты тиамина дисульфида (по данным хемореактомного моделирования)
Таблица 4. Сравнение эффектов тиамина дисульфида и тиамина гидрохлорида (по результатам хемореактомного моделирования)
Заключение. Для фармакотерапии неврологических заболеваний используются разные химические производные тиамина. Например, бенфотиамин («жирорастворимая» форма витамина В1) не поступает в ЦНС и действует преимущественно на периферическом уровне. Поэтому препараты на основе бенфотиамина используются для лечения полиневропатии (преимущественно диабетического генеза). Тиамина дисульфид и тиамина гидрохлорид, напротив, проходят через гематоэнцефалический барьер, концентрируются в ЦНС и вследствие этого эффективны не только при полиневропатии, но и при восстановлении функции памяти, в том числе при синдроме Корсакова.
Результаты хеморектомного анализа тиамина дисульфида, тиамина гидрохлорида и бенфотиамина во многом дополнили представления об этих действующих веществах. Тиамина дисульфид (входит в состав препарата Нейробион®) может ингибировать молекулярные рецепторы, вовлеченные в регуляцию АД: адренорецепторы, рецепторы вазопрессина, ангиотензина. На уровне ЦНС тиамина дисульфид может ингибировать обратный захват серотонина, повышать уровень серотонина и ингибировать рецептор бензодиазепина (антидепрессивный эффект), а также обратный захват дофамина (что важно для терапии алкогольной зависимости) и усиливать высвобождение ацетилхолина (поддержка памяти и нейропротекция). В сравнении с тиамина гидрохлоридом у тиамина дисульфида ярче проявляются антиагрегрантное действие, что важно для пациентов с тромбофилией.
Установленные в результате хемореактомного анализа различия между бенфотиамином, тиамина гидрохлоридом и тиамина дисульфидом позволяют определить перспективные направления клинического использования этих соединений в неврологии.
СПИСОК ЛИТЕРАТУРЫ
Декларация о финансовых и других взаимоотношениях
Исследование не имело спонсорской поддержки. Авторы несут полную ответственность за предоставление окончательной версии рукописи в печать. Все авторы принимали участие в разработке концепции статьи и написании рукописи. Окончательная версия рукописи была одобрена всеми авторами.
Целенаправленное вмешательство в патогенетические механизмы: так действует Мильгамма композитум
5. Целенаправленное вмешательство в патогенетические механизмы: так действует Мильгамма ® композитум
5.1. Биохимическая роль бенфотиамина для нервной системы
Такие исследования были проведены у 25 пациентов с циррозом печени (Hassan, 1991). У этих пациентов отмечалась гипергликемия и были выявлены отличающиеся от нормальных показателей параметры во время проведения орального теста толерантности к глюкозе (ОТТГ). После приема тиамина уровень глюкозы, определяемый натощак, непрерывно снижался вплоть до завершения исследования к 30-му дню (от 11 7,6±2,9 до 87,6±2,4) (p≤0,01). В ОТТГ, который выполнялся 30 дней, все показатели значительно улучшились (p≤0,01). На этом основании для улучшения утилизации глюкозы пациентам с циррозом печени рекомендуется дополнительный прием тиамина или бенфотиамина. Витамин В6 в своей фосфорилированной форме (пиридоксаль-5′-фосфат, ПФ) является коферментом большого числа ферментов, которые участвуют в общем неокислительном обмене аминокислот. Реакцией образования Шиффова основания ПФ своей альдегидной группой присоединяется к аминогруппе аминокислот апофермента. Ферментативные реакции включают декарбоксилирование, при котором синтезируются биогенные амины (гистамин, тирамин, триптамин) или нейромедиаторы (серотонин, допамин, γ-аминомасляная кислота [ГАМК]), трансаминирование, которое происходит при анаболических и катаболических процессах обмена веществ (например, в них участвуют глутамат-оксалацетат-трансаминаза, глутамат-пируват-трансаминаза, а-кетоглутарат-трансаминаза), а также различные процессы расщепления и синтеза аминокислот. Так, например, превращение гомоцистеина в цистеин катализируется двумя ПФ-зависимыми коферментами. Кроме того, ПФ выполняет роль кофермента для гликогенфосфорилазы.
5.2. «Нетрадиционная функция» бенфотиамина
Независимо от функций коферментов, ТТФ и ТДФ в клеточных мембранах проявляют также самостоятельные «нетрадиционные функции». Этот тезис базируется на первых экспериментах, выполненных von Muralt (1947), который после стимуляции нервов наблюдал повышенное высвобождение тиамина.
Тиамин связывается также с изолированными никотинергическими рецепторами. Нервная проводимость может зависеть от влияния антиметаболитов тиамина (Waldenlind, 1978). Существенное значение может иметь при этом контроль состояния натриевых каналов в аксональных мембранах, реализуемый посредством ТТФ (Schoffeniels, 1983).
5.3. Какую роль играет бенфотиамин при сахарном диабете?
Вследствие центральной роли тиамина в метаболизме глюкозы ставится вопрос об обеспеченности тиамином или потребности в нем при патологических нарушениях обмена веществ, которые развиваются при сахарном диабете. В экспериментальном исследовании у крыс с сахарным диабетом в периферической крови и различных органах определялся уровень тиамина с тиаминовой компенсацией и без нее (Hobara, 1983). В печени животных контрольной группы содержание тиамина оказалось наибольшим по сравнению с остальными исследованными органами. У животных с сахарным диабетом, не получавших тиаминовую компенсацию, содержание тиамина в печени было статистически достоверно сниженным (p *o ±0,01
5.4. Антиноцицептивное действие
Наряду с описанными выше эффектами тиамину и пиридоксину может быть свойственно также антиноцицептивное действие. Такие исследования в большинстве случаев проводились в сочетании с цианокобаламином. Возможными точками приложения действия являлись непосредственно болевые рецепторы, чувствительность которых варьирует в результате влияния различных тканевых гормонов (например брадикинина) и нейропептидов. Сенсибилизация болевых рецепторов проявляется, например, как воспалительная гипералгезия (повышенная болевая чувствительность). И здесь возможна взаимосвязь, так как недостаток в тиамине и пиридоксине сопровождается симптомами воспаления кожи и слизистых оболочек. Наряду с этим в стволе головного мозга имеются несколько областей, которые через нисходящие пути в спинном мозге осуществляют тормозящее влияние на вторичный нейрон и таким образом вызывают притупление болевой чувствительности. По всей видимости, медиатором в данном случае выступает серотонин. В то время как пиридоксальфосфат участвует в синтезе серотонина в качестве кофермента, тиамин выполняет важную функцию при его депонировании и транспорте. Именно здесь, возможно, находится точка реализации анальгетического действия фармакологических доз тиамина и пиридоксина (Reeh, 1988). Антиноцицептивное действие довольно просто подтверждается в экспериментах на животных. При использовании модели, предусматривающей проведение импульсов в таламус крыс после стимуляции Nervus suralis (икроножный нерв), проявлялось отчетливое тормозящее действие вышеописанной комбинации (тиамин или пири-доксин + кобаламин). Факт того, что эффект развивался только через 1 час после внутрибрюшинного введения, позволяет сделать вывод о том, что данный эффект оказывает влияние на синтез ингибиторного медиатора (Jurna, 1988). Тест «теплого глотка» у крыс позволяет провести термически индуцированную ноцицептивную реакцию. Петлевый тест приводит в действие абдоминальную реакцию путем внутрибрюшинного введения насыщенного раствора фенилбензохинона, при этом изучается химически индуцированная ноцицептивная реакция. При использовании обеих моделей описанная выше комбинация проявляла антиноцицептивный эффект, причем каждый из компонентов самостоятельно также оказывал действие. Применение комбинации усиливало анальгезирующий эффект диклофенака или метамизола (Wild, 1988).
Весьма существенно, что эти результаты подтверждались неоднократно, в том числе и при проведении двойного слепого клинического исследования. В качестве модели в большинстве случаев выступал болевой синдром позвоночного столба, при котором комбинация витаминов В1 и В6 демонстрировала временами значительные преимущества как сама по себе (Schwieger, 1988), так и в сочетании с диклофенаком (Koch, 1991).
5.5. Регенерирующее влияние на поврежденные нервные волокна
Следует также подчеркнуть влияние высоких доз нейротропных витаминов группы B на регенерацию поврежденных нервов. При экспериментальном аллергическом неврите в первую очередь нарушается миелиновый обмен. В этом случае происходит активация фосфолипазы-A, следствием чего является чрезмерный гидролиз эфиров жирных кислот, а также оказание влияния на жидкую субстанцию миелиновых оболочек. Одновременно происходит активация ацилтрансферазы.
Одновременное применение тиамина, пиридоксина и кобаламина при использовании данной модели сопровождается более поздним и ослабленным проявлением неврологической симптоматики, причем результаты указывают на то, что при этом стимулируется «восстановительный механизм» (Woelk, 1982). У кроликов с помощью теста криопоражения можно вызывать изолированное аксональное повреждение нервных волокон. Данная модель позволила установить, что через 21 день после поражения в дистальном регенерирующем отделе икроножного нерва числа регенерированных волокон было значительно увеличено после введения вышеупомянутой комбинации витаминов (Becker, 1990). На модели экспериментального неврита у кроликов было выявлено, что парентеральное введение высоких доз тиамина, пиридоксина гидрохлорида и цианокобаламина существенно увеличивает возможность встраивания холина в поврежденные нервы. Согласно методике, радиактивно меченый холин впрыскивался внутримедуллярно. Действие комбинации витаминов могло быть основано на стимуляции аксоплазматической части транспорта структурных элементов мембраны или миелиновой оболочки, например холина.
Встраивание холина было существенно повышено по сравнению с контрольной группой, что может интерпретироваться как проявление ускоряющего действия исследуемой комбинации на регенерацию периферических нервов. Существенным моментом являлось то, что животные не имели дефицита исследуемых компонентов. Авторы пришли к заключению, что способствующие регенерации свойства тиамина, пиридоксина и цианокобаламина основаны на фармакологических эффектах, характерных для высоких доз этих витаминов, и не зависящих от их дефицита. Возможно, тиамин посредством усиления энергообеспечения в форме ATФ поддерживает аксоплазматический транспорт, в то время как пиридоксин участвует в синтезе транспортных белков, а цианокобаламин обеспечивает доставку жирных кислот для клеточных мембран и миелиновой оболочки (Reiners, 1996).
Предотвращение образования конечных продуктов ускоренного гликозилирования белков (AGE-продуктов)
Результаты самых новых исследований подтверждают, что тиамин или его фосфаты, а также витамин В6 могут предотвращать образование конечных продуктов ускоренного гликозилирования белков (AGE-продуктов). Образование AGE-продуктов представляет собой важный патогенетически активный механизм токсичности глюкозы при сахарном диабете и диабетической полиневропатии (Brownlee, 1999 и 2001).
Рис. 8. Образование AGE-продуктов в клетках эндотелия HUVEC при инкубации с 5,6 ммоль/л или 28 ммоль/л глюкозы (Глю)сдобавлением тиамина (Тиа)150 ммоль/л и без него (La Selva, 1996)
В одном из современных исследований изучалось влияние бенфотиамина или тиамина на клеточные культуры HUVEC при глюкозной нагрузке (28 ммоль/л). В то время как при глюкозной нагрузке наблюдалось угнетение клеточной пролиферации, при добавлении бенфотиамина или тиамина она почти нормализовалась.
В экспериментальной работе изучалось влияние тиамина и его фосфатов, а также аминогуанидина и витамина В6 на образование AGE-продуктов при использовании в качестве субстратов альбумина бычьей сыворотки, рибонуклеазы A и метгемоглобина человека. При этом оказалось, что ТДФ и пиридоксамин, в отличие от аминогуанидина, являются более действенными ингибиторами образования AGE-продуктов (Booth, 1996).
Отправные точки вышеназванных биоактивных веществ в сложном процессе гликозилирования более подробно изучались в последующем исследовании с использованием альбумина бычьей сыворотки и рибонуклеазы A (Booth, 1 997). Было выявлено, что на этапе «позднего гликозилирования» ТДФ и пиридоксамин способны эффективно ингибировать образование AGE-продуктов. В отличие от них, аминогуанидин не оказывал практически никакого влияния на «позднее гликозилирование».
Активация транскетолазы бенфотиамином
Фармакодинамика бенфотиамина основывается на множестве принципов. Новейшие данные подтверждают возможность ингибирования образования AGE-продуктов. Бенфотиамин и витамин В6 препятствуют образованию AGE-продуктов и обеспечивают при диабетической полиневропатии возможность целенаправленного терапевтического вмешательства с помощью препарата Мильгамма ® композитум.
Что такое бенфотиамин? Его польза, свойства, рекомендации по применению, дозировки, побочные эффекты
Бенфотиамин – вещество, полученное искусственным путем учеными из Японии. Соединение было синтезировано в попытках отыскать средство для борьбы с дефицитом витамина В1, возникающим у людей, в рационе которых присутствует в основном белый рис. Использованное в 1954 году вещество стало наиболее эффективным и безопасным для организма средством для излечения от авитаминоза, которому дали название бери-бери. В процессе непрерывных исследований был обнаружен ряд свойств бенфотиамина, оказывающих благотворное влияние на организм.
Бенфотиамин – что это такое?
Разберемся, что это за витамин – бенфотиамин, рассмотрев его химические свойства. Он относится к соединениям, выполняющим те же функции, что и витамины группы В, нехватка которых эффективно восполняется за счет применения данного типа веществ. Бенфотиамин отличается жирорастворимостью. Повышенная эффективность соединения при использовании для восполнения дефицита связана с тем, что оно обладает высокой биодоступностью и не разрушается под действием тиаминазы.
Бенфотиамин и тиамин – в чем разница?
Разница между бенфотиамином и тиамином состоит в том, что второй из них подвержен разрушению тиаминазой, из-за чего его может быть недостаточно для полноценного функционирования организма, а первое имеет липофильную структуру, благодаря чему быстрее усваивается организмом. В отличие от своего аналога бенфотиамин сочетается с витаминами В3, В6, В12, а также кальцием и магнием, способствуя повышению их эффективности и улучшая метаболизм. Данное вещество не вызывает аллергической реакции и побочных действий со стороны желудочно-кишечного тракта.
Свойства и польза бенфотиамина
Препараты с данном витаминоподобным соединением в составе способствуют ускорению углеводного обмена, улучшая при этом работу нервной системы. Их польза заключается в выполнении следующих функций:
Говоря о том, для чего нужен бенфотиамин, стоит обратить внимание на его участие в процессе выработки миелина, который формирует оболочки периферических нервов. За счет этого предотвращается образование двигательных и чувствительных расстройств. Польза бенфотиамина отражается также в том, что он препятствует распространению воспалительных процессов и обеспечивает обезболивающий эффект.
Рекомендации по применению
Согласно инструкции по применению, бенфотиамин назначается при болезни Альцгеймера и сахарном диабете. Рекомендуется использовать его, если обнаружены нарушения функций нервной системы и сердечной мышцы, а также в случае диагностирования цирроза печени, вирусного гепатита или дерматоза. В инструкции к бенфотиамину прописано, что его назначение показано при алкогольной невропатии, атеросклерозе и интоксикации острого или хронического типа. Препарат необходим также людям с нарушением кровообращения.
Дозировка
Таблетки с бенфотиамином содержат в себе по 5 или 25 мг действующего вещества. Ориентируясь на концентрацию активного соединения в одной таблетке и на необходимую дозировку витамина в конкретном случае, врач может назначить его использование от 1 до 4 раз в сутки. Продолжительность курса приема варьируется от 2 до 4 недель.
Противопоказания
В инструкции по применению бенфотиамина сказано, что препарат нельзя давать детям. Он противопоказан также женщинам, которые вынашивают ребенка или кормят грудью. Отказаться от применения пищевой добавки нужно при обнаружении индивидуальной непереносимости к компонентам.
Побочные эффекты
Риск негативной реакции со стороны организма при использовании препарата минимален. В особо редких случаях в качестве побочных эффектов от применения бенфотиамина могут наблюдаться крапивница, зуд, высыпания на коже или отек Квинке.
Рейтинг: ТОП-5 лучших препаратов с бенфотиамином
Препараты с бенфотиамином представлены широким ассортиментом средств различных форм выпуска. Подобрать наиболее подходящий поможет представленный рейтинг. Сделать правильный выбор можно, также ознакомившись с отзывами покупателей.