Баллоны с суг что это
Сжиженный углеводородный газ — классификация, свойства и технологические преимущества
Терминология СУГ
Несмотря на такое разделение, в государственной документации и стандартизации в основном применяется одно название — «Сжиженные углеводородные газы», под которое попадает как СНГ, так и СПГ. Хотя с учетом развития отрасли производства и сбыта сжиженного природного газа не исключено, что в скором будущем будут разработаны отдельные стандартны для хранения, транспортировки и эксплуатации СПГ.
В целом, основываясь на анализе химического состава, к СУГ корректно относить все продукты с углеводородной основой, начиная от синтетического жидкого топлива, этилена, изобутана и заканчивая популярной смесью пропана и бутана. Кстати, зачем смешивают данные компоненты, можно прочитать здесь.
Свойства и способности сжиженных пропана, бутана и метана
Любой сжиженный углеводородный газ отличается высоким коэффициентом расширения. Так, в заполненном 50-литровом баллоне содержится 21 кг жидкого пропана-бутана. При испарении всей «жидкости» образуется 11 кубометров газообразного вещества, что эквивалентно 240 Мкал. Поэтому такой вид топлива считается одним из самых эффективных и экономически выгодных для систем автономного отопления. Больше об этом можно прочитать здесь.
При эксплуатации углеводородных газов необходимо учитывать их медленную диффузию в атмосферу, а также низкие пределы воспламеняемости и взрывчатости при контакте с воздухом. Поэтому с такими веществами нужно уметь правильно обращаться, учитывая их свойства и специальные требования безопасности.
Сжиженный углеводородный газ — чем он лучше других видов топлива
Индустрия применения СУГ достаточно широка, что обусловлено его теплофизическими характеристиками и эксплуатационными преимуществами по сравнению с другими видами топлива.
Подводя итоги статьи, можно сделать вывод, что сжиженные углеводороды обладают широким набором полезных свойств, что сделало их достаточно популярным продуктом во многих сферах промышленности. Для бытовых нужд пропан-бутан и вовсе является незаменимым сырьем, поскольку позволяет готовить пищу и обогревать жилье даже в самых отдаленных районах. Тем более что заказать его доставку совсем не сложно. Достаточно перейти по этой ссылке и выбрать необходимый продукт.
Что такое СУГ, его использование
Сжиженный углеводородный газ (сокращённо СУГ) представляет собой сложную смесь углеводородов, в нормальных условиях (давление в 1 атм. и температура 0°С) находящуюся в газообразном состоянии. Однако если давление немного повысить или температуру немного понизить, то СУГ перейдёт в жидкое состояние.
Наша компания предлагает купить сжиженный газ для газгольдера по привлекательным для покупателя ценам. Заправка газгольдеров пропаном у нас осуществляется профессионалами с большим опытом работы. Всё сделаем быстро и качественно.
Важно знать
В баллонах для хранения и транспортировки СУГ находится в двух фазах. Равновесие между ними носит динамический характер т. е. углеводородная жидкость постоянно испаряется, а газ постоянно конденсируется.
Состоит сжиженный газ для газгольдера в основном из пропана и бутана. Физические свойства у них схожие, но температура кипения различается. У пропана она минус 43°С, у бутана минус 0.5 °С. Некоторые из вас зададутся вопросом: зачем в смеси нужен бутан и нельзя отапливаться одним пропаном? Причины две:
Получают пропан и бутан при очистке и сепарации природного газа, попутного нефтяного газа, а также при перегонке нефти. Сжижение газов осуществляют компрессорным методом, путём увеличения давления. В жидком состоянии СУГ занимает в 600 раз меньше объёма, чем в газообразном.
Применение СУГ
Благодаря чистоте сгорания и сравнительно не высоких затратах на производство пропан-бутановая смесь нашла очень широкое использование не только в промышленности, но также в автотранспорте и в быту.
Промышленность
В строительстве СУГ применяют в газосварочных работах и при переработке металлов. В складских помещения СУГ используют для отопления и в качестве топлива для автопогрузчиков. В производстве некоторых растворителей и полипропилена бывает нужен пропан от СУГ. В косметической промышленности изобутан используется при производстве спреев. В холодильниках изобутан и пропан играют роль хладагента. В отличие от других веществ с такой функцией, они не разрушают озоновый слой.
Автотранспорт
Пропан-бутановая смесь – хорошая альтернатива бензину. Успешно может конкурировать с ним по цене. При переводе машины на газовое топливо автолюбитель экономит свои средства, увеличивает ресурс работы двигателя на 10-15%, снижает расход моторного масла на 10%.
Коммунальный сектор
Отопление с помощью СУГ частного дома или коттеджа, а также приготовление пищи на газу. Главное правильно рассчитать необходимый объём, чтобы хватило до следующего сезона заправки.
Бездорожье на доставку газа для газгольдера Московская область практически не влияет. У нашей компании достаточно мощные газовозы. Впрочем, на всякий случай возможные препятствия по маршруту уточнить стоит. Мало ли что. Особенно это касается мостов через реки и других подобных преград.
Заказать доставку газа можно у нас на сайте, не выходя из дома. Если вы до этого хоть раз делали покупку в интернет-магазине, сразу поймёте, на что нужно нажимать. Мы постарались сделать всё для того, чтобы интерфейс был интуитивно понятен для покупателя. Об условиях и способах оплаты можно узнать на соответствующих страницах сайта.
Сжиженные углеводородные газы
Сжиженный углеводородный газ (СУГ) — это углеводороды или их смеси, которые при нормальном давлении и температуре окружающего воздуха находятся в газообразном состоянии, но при увеличении давления на относительно небольшую величину без изменения температуры переходят в жидкое состояние.
Сжиженные газы получают из попутных нефтяных газов, а также газоконденсатных месторождений. На перерабатывающих заводах из них извлекают этан, пропан, а также газовый бензин. Наибольшую ценность для отрасли газоснабжения имеют пропан и бутан. Их главное преимущество в том, что их легко хранить и перевозить в виде жидкости, а использовать в виде газа. Другими словами, для перевозки и хранения сжиженных газов используются плюсы жидкой фазы, а для сжигания — газообразной.
Сжиженный углеводородный газ получил широкое применение во многих странах мира, включая Россию, для нужд промышленности, жилищного и коммунально-бытового сектора, нефтехимических производств, а также в качестве автомобильного топлива.
Молекула пропана состоит из трех атомов углерода и восьми атомов водорода
Пропан
Для систем газоснабжения, эксплуатируемых в России, наиболее подходящим является технический пропан (C3H8), так как он имеет высокую упругость паров вплоть до минус 35°C (температура кипения пропана при атмосферном давлении — минус 42,1°C). Даже при низких температурах из баллона или газгольдера, наполненного пропаном, легко отбирать нужное количество паровой фазы в условиях естественного испарения. Это позволяет устанавливать газовые баллоны со сжиженным пропаном на улице зимой и отбирать паровую фазу при низких температурах.
Бутан
При сгорании молекулы бутана в реакцию вступают четыре атома углерода и десять атомов водорода, что объясняет его большую теплотворную способность по сравнению с пропаном
Бутан (C4H10) — более дешевый газ, но отличается от пропана низкой упругостью паров, поэтому применяется только при положительных температурах. Температура кипения бутана при атмосферном давлении — минус 0,5°C.
Температура газа в резервуарах системы автономного газоснабжения должна быть положительной, иначе испарение бутановой составляющей СУГ будет невозможно. Для обеспечения температуры газа выше 0°C используется геотермальное тепло: газгольдер для частного дома устанавливается подземно.
Смесь пропана и бутана
В коммунально-бытовой сфере используется смесь пропана и бутана технических (СПБТ), в быту называемая пропан-бутаном. При содержании бутана в СПБТ свыше 60% бесперебойная работа резервуарных установок в климатических условия России невозможна. В таких случаях для принудительного перевода жидкой фазы в паровую применяются испарители СУГ.
Особенности и свойства СУГ
Свойства сжиженных газов влияют на меры безопасности, а также конструктивные и технические особенности оборудования, в котором они хранятся, перевозятся и используются.
Отличительные особенности сжиженных газов:
Зависимость давления насыщенных паров пропан-бутановой смеси от температуры
Зависимость давления насыщенных паров пропан-бутановой смеси от температуры
Зависимость плотности пропан-бутановой смеси от ее состава и температуры
Таблица плотностей сжиженной пропан-бутановой смеси (в т/м³) в зависимости от ее состава и температуры
T — температура газовой смеси (среднесуточная температура воздуха); P/B — соотношение пропана и бутана в смеси, %
Баллоны с суг что это
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГАЗЫ УГЛЕВОДОРОДНЫЕ СЖИЖЕННЫЕ ТОПЛИВНЫЕ
Fuel liquefied hydrocarbon gases. Specifications
____________________________________________________________________
Текст Сравнения ГОСТ Р 52087-2018 с ГОСТ Р 52087-2003 см. по ссылке.
— Примечание изготовителя базы данных.
__________________________________________________________________
Предисловие
1 РАЗРАБОТАН Акционерным обществом «Волжский научно-исследовательский институт углеводородного сырья» (АО «ВНИИУС»)
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
1 Область применения
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 8.423 Государственная система обеспечения единства измерений. Секундомеры механические. Методы и средства поверки
ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны
ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности
ГОСТ 12.1.018 Система стандартов безопасности труда. Пожаровзрывобезопасность статического электричества. Общие требования
ГОСТ 12.1.044 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения
ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования
ГОСТ 17.2.3.02 Правила установления допустимых выбросов загрязняющих веществ промышленными предприятиями
ГОСТ 400 Термометры стеклянные для испытаний нефтепродуктов. Технические условия
ГОСТ EN 589-2014 Топлива для двигателей внутреннего сгорания. Газы углеводородные сжиженные. Технические требования и методы испытаний
ГОСТ 1510 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение
ГОСТ 1770 Посуда мерная, лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия
ГОСТ ISO 4256 Газы углеводородные сжиженные. Определение манометрического давления паров. Метод СУГ
ГОСТ ISO 4257 Газы углеводородные сжиженные. Метод отбора проб
ГОСТ 6709 Вода дистиллированная. Технические условия
ГОСТ 6217 Уголь активный древесный дробленый. Технические условия
ГОСТ 10679 Газы углеводородные сжиженные. Метод определения углеводородного состава
ГОСТ 14921 Газы углеводородные сжиженные. Методы отбора проб
ГОСТ 16350 Климат СССР. Районирование и статистические параметры климатических факторов для технических целей
ГОСТ 17299 Спирт этиловый технический. Технические условия
ГОСТ 19433 Грузы опасные. Классификация и маркировка
ГОСТ 22387.5 Газ для коммунально-бытового потребления. Методы определения интенсивности запаха
ГОСТ 22985 Газы углеводородные сжиженные. Метод определения сероводорода и меркаптановой серы
ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры
ГОСТ 28656 Газы углеводородные сжиженные. Расчетный метод определения плотности и давления насыщенных паров
ГОСТ 29169 (ИСО 648-77) Посуда лабораторная стеклянная. Пипетки с одной отметкой
ГОСТ 30852.19 (МЭК 60079-20:1996) Электрооборудование взрывозащищенное. Часть 20. Данные по горючим газам и парам, относящиеся к эксплуатации электрооборудования
ГОСТ 32918 Нефть. Метод определения сероводорода, метил- и этилмеркаптанов
ГОСТ 33012 (ISO 7941:1988) Пропан и бутан товарные. Определение углеводородного состава методом газовой хроматографии
ГОСТ Р 12.4.026 Система стандартов безопасности труда. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний
ГОСТ Р 50994 (ИСО 4256-78) Газы углеводородные сжиженные. Метод определения давления насыщенных паров
ГОСТ Р 53228 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания
ГОСТ Р 54484 Газы углеводородные сжиженные. Методы определения углеводородного состава
ГОСТ Р 55609 Отбор проб газового конденсата, сжиженного углеводородного газа и широкой фракции легких углеводородов. Общие требования
ГОСТ Р 55878 Спирт этиловый технический гидролизный ректификованный. Технические условия
ГОСТ Р 56869 Газы углеводородные сжиженные и смеси пропан-пропиленовые. Определение углеводородов газовой хроматографией
3 Марки
3.1 В зависимости от содержания основного компонента и направления использования сжиженных газов устанавливают марки и коды ОКПД2, приведенные в таблице 1.
Газойл Центр
Нефть Газ Нефтепродукты
Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем
Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем
Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем. Более 30 лет в нашей стране, сжиженные углеводородные газы применяются в качестве авто-мобильного топлива. За сравнительно короткий промежуток времени пройден достаточно трудный путь по организации учета сжиженных газов, ясного понимания процессов, происходящих при перекачке, измерении, хранении, транспортировке. Общеизвестно, что добыча и использование нефти и газа в России имеет многовековую историю.
Быстрые темпы роста добычи газа стали возможны благодаря коренному усилению работ по строительству магистральных газопроводов, соединив-ших основные газодобывающие районы с потребителями газа крупными промышленными центра-ми и химическими заводами. Тем не менее, основательный подход к точному измерению и учету сжиженных газов в на-шей стране стал появляться не более 10 – 15 лет назад. Для сравнения, сжиженный газ в Англии производится с начала 30-х годов XX века, с учетом того, что это страна с развитой рыночной экономикой, технология измерения и учета сжиженных газов, а также производство специального оборудования для этих целей стали развиваться практически с началом производства.
Итак, коротко рассмотрим
Итак, коротко рассмотрим (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем), что представляют собой сжиженные углеводородные газы и как они производятся. Сжиженные газы делятся на две группы:
Сжиженные углеводородные газы (СУГ) – представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, т.е. смесь углеводородов различной молекулярной массы и различного строения. Основными компонентами СУГ являются пропан и бутан, в виде примесей в них содержатся более легкие углеводороды (ме-тан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).
ШФЛУ – широкая фракция легких углеводородов, включает в основном смесь легких угле-водородов этановой (С2) и гексановой (С6) фракций.
В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжижен – ный газ фракций С4- С5 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.
Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.
Пропан
Пропан́— это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C3H8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения −42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.
Пропан используется в качестве топлива, основной компонент так называемых сжиженных угле-водородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.
Бутан́(C4H 10) — органическое соединение класса алканов. В химии название используется в ос-новном для обозначения н-бутана. Химическая формула C4H10 (рис. 1). Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной темпе-ратуре — легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидро-каталитического крекинга нефтяных фракций.
Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:
предприятия нефтедобычи – получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой неф-ти;
предприятия газодобычи – получение СУГ и ШФЛУ происходит при первичной пере-работке скважинного газа или несвязанного газа и стабилизации конденсата;
Система
Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных измене-ний. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.
Углеводородные системы могут быть гомогенными и гетерогенными. Если система имеет однородные физические и химические свойства – она гомогенна, если же она неоднородна или со-стоит из веществ, находящихся в разных агрегатных состояниях – она гетерогенна. Двухфазные системы относятся к гетерогенным.
Под фазой понимается определенная гомогенная часть системы, имеющая четкую границу раздела с другими фазами.
Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары на жид-костью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.
Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.
Сжиженные углеводородные газы
Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части со-судов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары (рис. 2). При снижении температуры в резервуарах часть паров сконденсируется, т.е. увеличивается масса жид-кости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз.
Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом тем
пературы испарения и конденсации равны.
В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени раствори-мости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах.
Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.
1-3 – упругость паров: 1 – пропана, 2 – смеси пропан-бутана, 3 – бутана; 4-5 – линии гидратообразования: 4 – пропана, 5 – бутана.
Рисунок 3. Гидратообразование и упругость паров пропана и бутана.
Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.
За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.
Гидраты
Гидраты можно отнести к химическим соединениям, так как они имеют строго определенный состав, но это соединения молекулярного типа, однако химическая связь на базе электронов у гидратов отсутствует. В зависимости от молекулярной характеристики и структурной формы внутренних ячеек, различные газы внешне представляют собой четко выраженные прозрачные кристаллы разнообразной формы, а гидраты, полученные в турбулентном потоке – аморфную массу в виде плотно спрессованного снега.
Условия образования гидратов необходимо знать при проектировании трубопроводов и сис-тем для транспортировки газов, оборудования ГНС, АГЗС, а также для разработки мер по предупреждению их образования и ликвидации гидратных пробок. Установлено, что давление, при ко-тором образуются гидраты при температуре +5 0 С ниже упругости паров пропана и бутана.
В большинстве случаев, говоря о сжиженных газах, мы подразумеваем углеводороды соответствующие ГОСТ 20448-90 «Газы углеводородные сжиженные для коммунально-бытового потребления» и ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта». Они представляют собой смесь, состоящую в основном из пропана, бутана и изобутана. Благодаря идентичности строения их молекул приближенно соблюдается правило аддитивности: параметры смеси пропорциональны концентрациям и параметрам отдельных компонентов. Поэтому по некоторым параметрам можно судить о составе газов.
Соответствующие параметры смесей
Соответствующие параметры смесей получают суммированием парциальных параметров отдельных компонентов:
Где yсм – параметр смеси; yi – параметр компонента; xi – концентрация компонента.
В соответствие с правилом аддитивности и таблицами 1; 2 можно рассчитать любой параметр смеси. Для примера возьмем пропан-бутановую смесь с концентрацией 40% бутана и 60% пропана. Необходимо определить плотность смеси при 10 0 С. По формуле 1 находим:
ρсм = 516,8 ×0,6 +586,3 ×0,4 = 310,08 + 234,52 = 544,6
При проведении измерений количества СУГ и при учетных операциях на объектах хранения, важное значение имеют такие понятия как плотность, температурное расширение и вязкость.
Плотность, кг/м 3 – отношение массы тела к его объему, зависящее от углеводородного состава и его состояния. Плотность паровой фазы СУГ – сложная функция температуры, состояния и давления для каждого компонента.
Жидкой фазы плотность пропан-бутановых смесей зависит от состава углеводородов и температуры, так как с ростом температуры снижается плотность жидкости, что обусловлено объемным расширением.
Относительное изменение объема жидкости при изменении температуры на один градус характеризуется температурным коэффициентом объемного расширения β т, который у сжиженных газов (пропана и бутана) в несколько раз больше чем у иных жидкостей.
При повышении давления жидкая фаза пропана и бутана сжимается. Степень сжатия ее оценивается коэффициентом объемной сжимаемости βсж, размерность которого обратна размерности давления.
Вязкость – это способность газов или жидкостей оказывать сопротивление сдвигающим усилиям, обусловленная силами сцепления между молекулами вещества. При относительном движении между слоями потока возникает касательная сила, которая зависит от площади соприкосновения слоев и градиента скорости. Удельное касательное напряжение, возникающее между слоями, определяет динамическую вязкость газа или жидкости и называется коэффициентом динамической вязкости. Анализ экспериментальных исследований показал, что вязкость СУГ зависит от темпера-туры, а с увеличением давления растет незначительно. В отличие от жидкостей у газа вязкость с повышением температуры возрастает.
Термодинамические и физические свойства жидкой фазы пропана и бутана
293 (20) | 0,834 | 503,9 | 2,209 | 2,650 | 345,67 | 117,03 | 0,876 | 2,52 |
298 (25) | 0,953 | 497,4 | 2,120 | 2,699 | 337,125 | 116,35 | 0,867 | 2,45 |
303 (30) | 1,084 | 490,9 | 2,037 | 2,747 | 328,58 | 115,66 | 0,858 | 2,37 |
308 (35) | 1,228 | 484,5 | 1,960 | 2,799 | 318,84 | 114,97 | 0,848 | 2,31 |
313 (40) | 1,385 | 478,0 | 1,887 | 2,851 | 309,11 | 114,28 | 0,839 | 2,25 |
318 (45) | 1,558 | 571,5 | 1,818 | 2,916 | 297,48 | 113,59 | 0,826 | 2,20 |
323 (50) | 1,745 | 465,1 | 1,755 | 2,981 | 285,84 | 112,90 | 0,814 | 2,16 |
Жидкая фаза бутана
228 (-45) 0,0126 667,0 4,92 2,125 420,36 132,72 0,9364 5,25
223 | (-50) | 0,0094 | 674,3 | 5,09 | 2,114 | 423,96 | 133,45 | 0,9362 | 5,44 |
233 | (-40) | 0,0167 | 659,7 | 4,76 | 2,135 | 416,75 | 131,59 | 0,9371 | 5,08 |
238 | (-35) | 0,0218 | 652,3 | 4,60 | 2,152 | 412,97 | 131,27 | 0,9351 | 4,92 |
243 | (-30) | 0,0280 | 645,0 | 4,43 | 2,169 | 409,19 | 130,54 | 0,9331 | 4,75 |
248 | (-25) | 0,0357 | 637,7 | 4,28 | 2,188 | 405,41 | 129,82 | 0,9304 | 4,60 |
253 | (-20) | 0,0449 | 630,3 | 4,18 | 2,207 | 401,63 | 129,09 | 0,9280 | 4,50 |
258 | (-15) | 0,056 | 616,6 | 3,98 | 2,234 | 397,67 | 128,37 | 0,9319 | 4,27 |
263 | (-10) | 0,069 | 611,5 | 3,83 | 2,261 | 393,70 | 127,64 | 0,9232 | 4,15 |
268 | (-5) | 0,085 | 606,3 | 3,698 | 2,270 | 389,56 | 126,92 | 0,9222 | 4,01 |
273 | (0) | 0,103 | 601,0 | 3,561 | 2,307 | 385,42 | 126,19 | 0,9101 | 3,91 |
278 | (5) | 0,123 | 593,7 | 3,422 | 2,334 | 381,10 | 125,46 | 0,9054 | 3,78 |
283 | (10) | 0,147 | 586,3 | 3,320 | 2,361 | 376,77 | 124,74 | 0,9011 | 3,68 |
288 | (15) | 0,175 | 579,0 | 3,173 | 2,392 | 372,09 | 124,01 | 0,8940 | 3,55 |
293 | (20) | 0,206 | 571,7 | 3,045 | 2,424 | 367,41 | 123,29 | 0,8897 | 3,42 |
298 | (25) | 0,242 | 564,3 | 2,934 | 2,460 | 362,37 | 122,56 | 0,8828 | 3,32 |
303 | (30) | 0,282 | 557,0 | 2,820 | 2,495 | 357,32 | 121,84 | 0,8767 | 3,22 |
308 | (35) | 0,327 | 549,7 | 2,704 | 2,535 | 351,92 | 121,11 | 0,8691 | 3,11 |
313 | (40) | 0,377 | 542,3 | 2,606 | 2,575 | 346,52 | 120,39 | 0,8621 | 3,02 |
318 | (45) | 0,432 | 535,0 | 2,525 | 2,625 | 340,76 | 119,66 | 0,8521 | 2,96 |
323 | (50) | 0,494 | 527,7 | 2,421 | 2,680 | 334,99 | 118,93 | 0,8409 | 2,88 |
Таблица 2.
Термодинамические и физические свойства паровой фазы пропана и бутана
8
Паровая фаза бутана
303 (30) | 0,282 | 6,68 | 10,517 | 1,770 | 357,32′ | 1,57 | 13,3 |
308 (35) | 0,327 | 7,60 | 9,402 | 1,791 | 351,92 | 1,62 | 11,9 |
313 (40) | 0,377 | 8,62 | 8,428 | 1,810 | 346,52 | 1,67 | 10,7 |
318 (45) | 0,432 | 9,72 | 7,596 | 1,830 | 340,755 | 1,72 | 9,7 |
323 (50) | 0,494 | 10,93 | 6,864 | 1,848 | 334,99 | 1,77 | 8,8 |
Таким образом, можно подвести итог и выделить основные свойства пропан-бутановых смесей, влияющих на условия их хранения, транспортирования и измерения.
В мире
Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.
Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.
Принципиально, системы, перекачивающие СУГ (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем), мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.
Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.
Пояснения
Резервуар хранения должен быть оборудован входным патрубком для налива продукта, линией слива для отпуска и линией паровой фазы, которая используется для выравнивания давления, воз-врата паров от газоотделителя или калибровки системы.
Насос – обеспечивает давление, необходимое для движения продукта через систему отпуска. Насос должен быть подобран по емкости, производительности и давлению.
Измеритель – включает преобразователь количества продукта и отсчетное устройство (индикацию) которое может быть электронным или механическим.
Газоотделитель – отделяет пар, образованный во время потока жидкости, прежде чем он достиг-нет счетчика и возвращает его в паровое пространство резервуара.
Дифференциальный клапан – служит для обеспечения прохождения через счетчик только жид-кого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.
Система должна удовлетворять следующим требованиям:
быть герметичной и выдерживать необходимое расчетное давление; изготовлена из материалов, предназначенных для работы с СУГ;
оборудована клапанами сброса давления для управляемого выпуска продукта при превышении давления сверх рабочего.
Основные характеристики конструкции, описанные выше, применимы ко всем типам систем, используемых для измерения и отпуска СУГ. Однако это не единственные критерии. Конструкция системы должна отражать различные условия ее использования для коммерческого отпуска продукта (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).
Условно можно разделить системы измерения на следующие группы (типы):
осуществление измерения СУГ (в том числе налив автоцистерн) при относительно высокой скорости потока (400-500 л/мин.). Как правило, это НПЗ, ГНС.
измерение количества СУГ при поставках на АГЗС или конечным потребителям авто-цистернами (в том числе налив автоцистерн). Производительность в данном случае колеблется от 200 до 250 л/мин.
Коммерческая заправка газобаллонных автомобилей. Скорость заправки обычно не превышает 50 л/мин.
Конструкция и тип систем измерения для СУГ определен физическими свойствами продукта, особенно его зависимость от температуры и давления во время отпуска.
Чтобы обеспечить точное измерение, конструкция системы должна включать средства для минимизации испарения и устранения образовавшегося пара, прежде чем он попадет в счетчик.
Конструкция измерительной системы зависит от ее использования и от максимальной производительности. Измерительные установки могут использоваться как стационарно, так и устанавли-ваться на автоцистернах, применяться при оптовой и розничной продаже.
Рассмотрим отдельно компоненты, которые учувствуют в операциях измерения СУГ и являются обязательными для большинства систем учета (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).
Напорная линия – соединяет емкость хранения и входной патрубок установки измерения и имеет элементы, которые управляют потоком жидкости и гарантируют ее поддержание в жидком состоянии. Напорная линия, как правило, состоит из следующих элементов:
Насосы.
Поскольку в емкости хранения система жидкость-пар находятся в равновесном состоянии и в купе с системой измерения составляют закрытую систему, газ не может течь самостоятельно. В результате должен использоваться насос для подачи СУГ на раздаточную линию.
Существует несколько типичных конструкций насосов, широко применяемых в тех или иных случаях. Это лопастные насосы, шестеренные насосы, вихревые насосы.
Скорость насоса может стать критическим фактором для точности измерительной системы и
Перепускной клапан.
В течение коротких промежутков времени, насос может находиться в рабочем состоянии, в то время как отпуск продукта не производится. Чтобы предотвратить повреждения, ряд насосов оборудованы перепускными клапанами. При повышении давления, клапан внутри насоса открывается, и жидкость начинает циркулировать внутри насоса. Как правило, подобная схема приводит к нагреву продукта и его вскипанию, при этом образуется паровая подушка, препятствующая движению жидкости. Проведя неоднократные опыты с насосами, оборудованными внутренними перепускными клапанами, мы пришли к выводу, что оптимальное решение для таких жидкостей как СУГ, это установка внешнего перепускного клапана.
Эта конструкция позволяет продукту циркулировать через емкость хранения и непрерывно снабжать насос не разогретым газом.
Скоростные клапаны.
Скоростными клапанами должны быть оборудованы все патрубки емкости хранения и раздаточные рукава. Цель этих клапанов остановить поток продукта в случае разрыва рукава или разъединения раздаточного крана.
Манометры.
Манометры необходимо устанавливать на всасывающей и напорной линиях насоса, на паро-вой фазе емкости хранения, а также на фильтрах системы (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).
Предохранительные клапаны.
В любом месте технологической и измерительной систем, где возможно заключение объема жидкости между двумя запорными устройствами необходима установка предохранительных клапанов, для предотвращения от возможного превышения давления.
Газоотделитель.
Газоотделитель – отделяет пар, образованный во время потока жидкости, прежде чем он достигнет счетчика и возвращает его в паровое пространство резервуара.
Как правило, газоотделители имеют поплавковую систему газоотделения, но некоторые производители отказываются от такой схемы в пользу применения скоростных или обратных клапанов и установки расширяющихся патрубков (сифонов) совместно с отверстиями малых диаметров. Та-кая схема для СУГ достаточно эффективна, если принять во внимание, что газоотделитель в за-крытых системах играет роль газо-конденсатора, т.е. его цель сконденсировать паровую фазу, а часть отвести в емкость хранения.
Фильтры.
Краны и клапаны.
Неотъемлемой частью любой технологической системы для СУГ являются запорные устройства. Они призваны обеспечить удобное и быстрое техническое обслуживание отдельных компонентов без освобождения от газа и давления всей системы.
Счетчики и отсчетные устройства.
Отделенная от пара жидкость, после газоотделителя попадает в счетчик (преобразователь объема) (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем). В большинстве систем измерения СУГ счетчики имеют тип камерного расходомера, который, по нашему мнению, является самым надежным и очень точным методом измерения жидкости. Существуют также другие типы расходомеров, такие как турбинные или массовые (кориолисовые) расходомеры.
Конструкция камерных расходомеров с технической точки зрения достаточно сложна, но принцип их работы является прямым. Существуют следующие типы расходомеров: шестеренные, ротационные, кольцевые, дисковые, лопастные, ковшовые, поршневые и т.п.
Из-за простого принципа действия таких устройств измерения, число факторов, которые вызывают неточное измерение немного.
Дифференциальный клапан
Дифференциальный клапан – служит для обеспечения прохождения через счетчик только жидкого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.
Линия отпуска
Линия отпуска пропускает измеренный продукт к точке выдачи. Чтобы обеспечить точное измерение, шланг должен быть заполнен жидким продуктом в начале отпуска и под рабочим давлением. Это называется «полный рукав». Для этого раздаточные пистолеты имеют клапан, который закрывается после отпуска и отсоединения раздаточного крана.
Свойства сжиженных углеводородных газов, как впрочем, и других жидкостей, требующих учета подразумевают индивидуальный подход к выбору оборудования
Тем не менее, благодаря многолетнему мировому опыту и точным теоретическим данным о свойствах сжиженных газов имеет место универсальность оборудования, т.е. конфигурация того или иного гидравлического узла позволяет использовать его в любой технологической системе по перекачке, измерению и учету СУГ.
Наша компания ежедневно сталкивается с задачами выбора и проектирования оборудования для различных технологических систем. Благодаря собственному опыту, а также опыту мировых производителей нам удалось создать устройства, которые в любой технологической системе позволяют исключить, или, по крайней мере, минимизировать отрицательные факторы термодинамических свойств СУГ.
Таким образом, подводя итог сказанному можно сделать вывод, что выбор оборудования дол-жен быть максимально облегчен и производиться по параметрам производительности, точности, внешнего вида и т.д. (рис.4) Остальные технические характеристики оборудования (это подтверждается мировой практикой) должны быть предусмотрены самой конструкцией.
Критерии выбора технологического оборудования